DOI QR코드

DOI QR Code

Hydroxyapatite Coatings on Titanium Using Electrochemical Deposition Method at Body Fluid Temperature

생체온도에서 전기화학증착법을 이용한 티타늄 상 수산화인회석 코팅 연구

  • Kim, Su-Chul (Dept. of Dental Materials and Dental Materials Research Institute, Chonnam National University) ;
  • Hwang, Moon-Jin (Central Research Facilities, Gwangju Institute of Science and Technology) ;
  • Lee, Woon-Young (Dept. of Dental Materials and Dental Materials Research Institute, Chonnam National University) ;
  • Park, Yeong-Joon (Dept. of Dental Materials and Dental Materials Research Institute, Chonnam National University) ;
  • Song, Ho-Jun (Dept. of Dental Materials and Dental Materials Research Institute, Chonnam National University)
  • 김수철 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 황문진 (중앙연구기기센터 광주과학기술원) ;
  • 이운영 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 박영준 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소) ;
  • 송호준 (전남대학교 치의학전문대학원 치과재료학교실 및 치과재료연구소)
  • Received : 2018.09.07
  • Accepted : 2018.09.27
  • Published : 2018.09.30

Abstract

In this study, hydroxyapatite (HAp) was coated on titanium using electrochemical deposition (ECD) method at body fluid temperature. The titanium specimens for ECD were prepared by chemically etching treatment using 5M NaOH solution. The electrolyte mixed with 5 mM $Ca(NO_3)_2$ and 2 mM $NH_4H_2PO_4$ which has pH 5 (E2) was adjusted to pH 3 (E1) and pH 6 (E3). The different electric pulses of -10, -15, -30 mA were applied to each specimen. The temperature of electrolytes was kept at $37^{\circ}C$. E1-10, E1-15, E1-30, E2-10, E2-15, E2-30, E3-10, E3-15, and E3-30 groups were prepared for this study. Scanning electron microscope (SEM) images showed that E1-10 and E1-15 groups were not coated and the powder-shaped compounds were formed on E3-15 and E3-30 groups. The cracks were observed on the surface of E1-30 and E2-30 groups. The evenly and stable coated layer was deposited on E2-10, E2-15 and E3-10 groups. The layer coated on titanium surface had an HAp crystalline structure. E1-30 and E2-30 groups had low crystallinity, even though they had thick layer. HAp layer on for E2-10 group was well deposited on the surface because it more aligned to c-axis compared with other groups.

본 연구에서는 생체 온도에서 전기화학적 증착(Electrochemical deposition;ECD) 방법을 이용하여 티타늄 상에 수산화인 회석(Hydroxyapatite; HAp)을 코팅하는 방법을 연구하였다. 5M NaOH 용액을 이용하여 에칭 처리된 티타늄 디스크 시편들이 ECD를 위하여 사용되었다. 5 mM $Ca(NO_3)_2$와 2 mM $NH_4H_2PO_4$을 혼합하여 제조한 pH 5(E2)인 전해질을 pH 3(E1)과 pH 6(E3)으로 각각 조정하여 세 종류의 전해질을 준비하였다. 티타늄 시편에 -10, -15, -30 mA의 다른 전류를 갖는 펄스를 인가하였으며, 전해질의 온도는 $37^{\circ}C$로 유지하였다. 이와 같이 E1-10, E1-15, E1-30, E2-10, E2-15, E2-30, E3-10, E3-15, E3-30 시편군을 준비하였다. 제조된 각 시편들의 표면 형상을 관찰한 결과, pH가 3이고 15 mA의 낮은 전류 하에서는 코팅이 이루어지지 않았으며, E3-15과 E3-30 시편에서는 분말형태의 코팅막이 형성되었다. pH가 3과 5이고 30 mA의 높은 전류가 인가된 E1-30과 E2-30 시편에서는 겔 형태의 화합물이 증착되어 건조 후 갈라짐이 발생하였다. E2-10, E2-15, E3-10 시편군들에서 균일하고 안정된 형태의 코팅막이 형성되었으며, 결정구조 분석을 통하여 HAp가 코팅된 것을 확인하였다. 특히 E2-10 시편이 다른 시편들에 비하여 c-축 방향으로 정렬되어 HAp가 시편 표면에 잘 증착되었다.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea(NRF)

References

  1. 오두례, 김정재, 국진선, 오성근, 이승재, 김가람, 이민호 (2012). 샌드블라스팅과 알칼리처리에 의한 티타늄의 표면개질 효과. 대한치과재료학회지 39(1):1-7.
  2. Balamurugan A, Balossier G, Kannan S, Rajeswari S (2006). Elaboration of sol-gel derived apatite films on surgical grade stainless steel for biomedical applications. Mater. Lett. 60:2288-2293. https://doi.org/10.1016/j.matlet.2005.12.126
  3. Brossa F, Cigada A, Chiesa R, Paracchini L, Consonni C (1994). Post-deposition treatment effects on hydroxyapatite vacuum plasma spray coatings. J. Mater. Sci. Mater. Med. 5:855-857. https://doi.org/10.1007/BF01172024
  4. Cooper LF (1998). Biologic determinants of bone formation for osseointegration: clues for future clinical improvements. J Prosthet Dent 80: 439-449. https://doi.org/10.1016/S0022-3913(98)70009-5
  5. Cui FZ, Luo ZS, Feng QL (1997). Highly adhesive hydroxyapatite coatings on titanium alloy formed by ion beam assisted deposition. J. Mater. Sci. Mater. Med. 8:403-405. https://doi.org/10.1023/A:1018597320022
  6. Ding SJ, Huang TH, Kao CT (2003). Immersion behavior of plasma-sprayed modified hydroxyapatite coatings after heat treatment. Surf. Coat. Technol. 165:248-257. https://doi.org/10.1016/S0257-8972(02)00745-4
  7. Fan X, Chen J, Ruan JM, Zhou ZC, Zou JP (2009). Bone-like apatite formation on HA/316L stainless steel composite surface in simulated body fluid. Trans. Nonferrous Metals Soc. China 19:347-352. https://doi.org/10.1016/S1003-6326(08)60276-9
  8. Gopi D, Collins Arun Prakash V, Kavitha L (2009). Evaluation of hydroxyapatite coatings on borate passivated 316L SS in Ringer's solution. Mater. Sci. Eng. C 29:955-958. https://doi.org/10.1016/j.msec.2008.08.020
  9. Gopi D, Collins Arun Prakash V, Kavitha L, Kannan S, Bhalaji PR, Shinyjoy E, Ferreira JMF (2011). A facile electrodeposition of hydroxyapatite onto borate passivated surgical grade stainless steel. Corros. Sci. 53:2328-2334. https://doi.org/10.1016/j.corsci.2011.03.018
  10. Gross KA, Berndt CC, Dinnebier R, Stephens P (1998). Oxyapatite in hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 33:3985-3991. https://doi.org/10.1023/A:1004605014652
  11. Guehennec LL, Soueidan A, Layrolle P, Amouriq Y (2007). Surface treatments of titanium dental implants for rapid osseointegration. Dental Materials 23:844-854. https://doi.org/10.1016/j.dental.2006.06.025
  12. Heimann RB (2006). Thermal spraying of biomaterials. Surf. Coat. Technol. 201:2012-2019. https://doi.org/10.1016/j.surfcoat.2006.04.052
  13. Huang LY, Xu KW, Lu J (2000). A study of the process and kinetics of electrochemical deposition and the hydrothermal synthesis of hydroxyapatite coatings. J. Mater. Sci. Mater. Med. 11:667-673.
  14. Jones FH (2001). Teeth and bones: applications of surface science to dental materials and related biomaterials. Surf. Sci. Rep. 42:75-205. https://doi.org/10.1016/S0167-5729(00)00011-X
  15. Kim WK, Lee SJ, Oh EJ, Park IS, Lee MH, Oh KO, Kim HS (2012). Surface Modification of Titanium Implant by Anodic Oxidation Treatment and Bisphosphate Immobilization. 대한치과재료학회지 39(3):191-198.
  16. Liu DM, Yang Q, Troczynski T (2002). Sol-gel hydroxyapatite coatings on stainless steel substrates. Biomaterials 23:691-698. https://doi.org/10.1016/S0142-9612(01)00157-0
  17. Liu X, Chu PK, Ding C (2004). Surface modification of titanium, titanium alloys, and related materials for biomedical applications. Mater. Sci. Eng. R 47:49-121. https://doi.org/10.1016/j.mser.2004.11.001
  18. Manso M, Jimenez C, Morant C, Herrero P, Duart JMM (2000). Electrodeposition of hydroxyapatite coatings in basic conditions. Biomaterials 21:1755-1761. https://doi.org/10.1016/S0142-9612(00)00061-2
  19. Mendonca G, Mendonca DB, Simoes LG, Araujo AL, Leite ER, Duarte WR, Aragao FJ, Cooper LF (2009). The effects of implant surface nanoscale features on osteoblast-specific gene expression. Biomaterials 30:4053-4062. https://doi.org/10.1016/j.biomaterials.2009.04.010
  20. Nanci A, Wuest JD, Peru L, Brunet P, Sharma V, Zalzal S, McKee MD (1998). Chemical modification of titanium surfaces for covalent attachment of biological molecules. J Biomed Mater Res 40:324-335. https://doi.org/10.1002/(SICI)1097-4636(199805)40:2<324::AID-JBM18>3.0.CO;2-L
  21. Redepenning J, McIsaac JP (1990). Electrocrystallization of brushite coatings on prosthetic alloys. Chem Mater 2:625-627. https://doi.org/10.1021/cm00012a001
  22. Royer P, Rey C (1991). Calcium phosphate coatings for orthopaedic prosthesis. Surf Coat Tech 45:171-177. https://doi.org/10.1016/0257-8972(91)90220-Q
  23. Shirkhanzadeh M (1991). Bioactive calcium phosphate coatings prepared by electrodeposition. J. Mater. Sci. Lett. 10:1415-1417. https://doi.org/10.1007/BF00735695
  24. Shirkhanzadeh M (1993). Electrochemical preparation of bioactive calcium phosphates coatings on porous substrates by the periodic pulse technique. J Mater Sci Lett 12:16-19.
  25. Sridhar TM, Kamachi Mudali U, Subbaiyan M (2003). Preparation and characterisation of electrophoretically deposited hydroxyapatite coatings on type 316L stainless steel. Corros. Sci. 45:237-252. https://doi.org/10.1016/S0010-938X(02)00091-4
  26. Stanford CM, Johnson GK, Fakhry A, Gratton D, Mellonig JT, Wanger W (2006). Outcomes of a fluoride modified implant one year after loading in the posterior-maxilla when placed with the osteotome surgical technique. Appl Osseointegration Res 5:50-55.
  27. Webster TJ, Hellenmeyer EL, Price RL (2005). Increased osteoblast functions on theta + delta nanofiber alumina. Biomaterials 26:953-960. https://doi.org/10.1016/j.biomaterials.2004.03.040
  28. Wen CE, Yamada Y, Shimojima K, Chino Y, Asahina T, Mabuchi M (2002). Processing and mechanical properties of autogenous titanium implant materials. J. Mater. Sci. Mater. Med. 13:397-401. https://doi.org/10.1023/A:1014344819558
  29. Zhang L, Ramsaywack S, Fenniri H, Webster TJ (2008). Enhancedosteoblast adhesion on self-assembled nanostructured hydrogel scaffolds. Tissue Engineering, A 14:1353-1364. https://doi.org/10.1089/ten.tea.2006.0436
  30. Zhitomirsky I, Gal-Or L (1997). Electrophoretic deposition of hydroxyapatite. J. Mater. Sci. Mater. Med. 8:213-29.