DOI QR코드

DOI QR Code

Improved photoelectric performance via fabricated heterojunction g-C3N4/TiO2/HNTs loaded photocatalysts for photodegradation of ciprofloxacin

  • Wu, Dongyao (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Li, Jinze (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Guan, Jingru (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Liu, Chongyang (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Zhao, Xiaoxu (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Zhu, Zhi (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Ma, Changchang (School of Environment, Jiangsu University) ;
  • Huo, Pengwei (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Li, Chunxiang (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University) ;
  • Yan, Yongsheng (Institute of Green Chemistry and Chemical Technology, School of Chemistry & Chemical Engineering, Jiangsu University)
  • Received : 2017.10.11
  • Accepted : 2018.03.11
  • Published : 2018.08.25

Abstract

An Intercalated heterostructural $g-C_3N_4/TiO_2/HNTs$ supported photocatalyst was successfully prepared via sol-gel and calcination methods. The introduction of HNTs and the $g-C_3N_4-TiO_2$ heterojunction effectively enhanced the charge transfer and separation efficiency of photogenerated electron-hole pairs, which endued the $g-C_3N_4/TiO_2/HNTs$ hybrid material with an outstanding photoelectric performance and good stability. And an obviously enhanced photocatalytic activity was exhibited by photodegrading ciprofloxacin compared with pure $TiO_2$. Furthermore, the main active species were detected through trapping experiment and ESR spin-trap technique with DMPO, which confirmed that the $^{\bullet}O_2{^-}$ and the $h^+$ were the main active species in the photocatalytic system.

Keywords

Acknowledgement

Supported by : National Natural Science Foundation of China, National Science Foundation of Jiangsu Province, China Postdoctoral Science Foundation

References

  1. J.M.A. Blair, M.A. Webber, A.J. Baylay, D.O. Ogbolu, L.J.V. Piddock, Nat. Rev. Microbiol. 13 (2015) 42. https://doi.org/10.1038/nrmicro3380
  2. J. Xu, Y. Xu, H. Wang, C. Guo, H. Qiu, Y. He, Chemosphere 119 (2015) 1379. https://doi.org/10.1016/j.chemosphere.2014.02.040
  3. H.Q. Wang, J.Z. Li, M.J. Zhou, Q.F. Guan, Z.Y. Lu, P.W. Huo, Y.S. Yan, J. Ind. Eng. Chem. 30 (2015) 64. https://doi.org/10.1016/j.jiec.2015.05.002
  4. Y. Gao, Y. Li, L. Zhang, H. Huang, J. Hu, S.M. Shah, J. Colloid Interface Sci. 368 (2012) 540. https://doi.org/10.1016/j.jcis.2011.11.015
  5. F.C. Moreira, S. Garcia-Segura, A.R.B. Rui, E. Brillas, V.J.P. Vilar, Appl. Catal. B: Environ. 160-161 (2014) 492. https://doi.org/10.1016/j.apcatb.2014.05.052
  6. Z.Q. Ma, Y.L. Ma, L. Xie, Z.Y. Zhang, M. Wang, Environ. Sci. Technol. 35 (2012) 46.
  7. C. Zhao, M. Pelaez, X.D. Duan, H.P. Deng, K. O'Shea, D. Fatta-Kassinos, D.D. Dionysiou, Appl. Catal. B: Environ. 134-135 (2013) 83. https://doi.org/10.1016/j.apcatb.2013.01.003
  8. J. Xue, S. Ma, Y. Zhou, Z. Zhang, M. He, ACS Appl. Mater Interfaces 7 (2015) 9630. https://doi.org/10.1021/acsami.5b01212
  9. S.Z. Li, X.Y. Li, D.Z. Wang, Sep. Purif. Technol. 34 (2004) 109. https://doi.org/10.1016/S1383-5866(03)00184-9
  10. E.S. Aazam, J. Ind. Eng. Chem. 20 (2014) 2870. https://doi.org/10.1016/j.jiec.2013.11.020
  11. M.Y. Chang, C.Y. Chang, Y.H. Hsieh, K.S. Yao, T.C. Cheng, C.T. Ho, Adv. Mater. Res. 47-50 (2008) 471. https://doi.org/10.4028/www.scientific.net/AMR.47-50.471
  12. Y. Hou, X. Li, X. Zou, X. Quan, G. Chen, Environ. Sci. Technol. 43 (2009) 858. https://doi.org/10.1021/es802420u
  13. Z.B. Xiang, Y. Wang, D. Zhang, P. Ju, J. Ind. Eng. Chem. 40 (2016) 83. https://doi.org/10.1016/j.jiec.2016.06.009
  14. Y.J. Chen, D.D. Dionysiou, Appl. Catal. B: Environ. 80 (2008) 147. https://doi.org/10.1016/j.apcatb.2007.11.010
  15. I. Nitoi, P. Oancea, M. Raileanu, M. Crisan, L. Constantin, I. Cristea, J. Ind. Eng. Chem. 21 (2015) 677. https://doi.org/10.1016/j.jiec.2014.03.036
  16. L. Zhou, L.Z. Wang, J.Y. Lei, Y.D. Liu, J.L. Zhang, Catal. Commun. 89 (2017) 125. https://doi.org/10.1016/j.catcom.2016.09.022
  17. L. Zhou, L.Z. Wang, J.L. Zhang, J.Y. Lei, Y.D. Liu, Res. Chem. Intermed. 43 (2017) 2081. https://doi.org/10.1007/s11164-016-2748-8
  18. H. Li, L. Zhou, L.Z. Wang, Y.D. Liu, J.Y. Lei, J.L. Zhang, Phys. Chem. Chem. Phys. 17 (2015) 17406. https://doi.org/10.1039/C5CP02554K
  19. V. Subramanian, E. Wolf, P.V. Kamat, J. Phys. Chem. B 105 (2001) 11439. https://doi.org/10.1021/jp011118k
  20. R.C. Pawar, S. Kang, S.H. Ahn, C.S. Lee, RSC Adv. 5 (2015) 24281. https://doi.org/10.1039/C4RA15560B
  21. Y.H. Jiang, F. Li, Y. Liu, Y.Z. Hong, P.P. Liu, L. Ni, J. Ind. Eng. Chem. 41 (2016) 130. https://doi.org/10.1016/j.jiec.2016.07.013
  22. Z.S. Li, S.Y. Yang, J.M. Zhou, D.H. Li, X.F. Zhou, C.Y. Ge, Y.P. Fang, Chem. Eng. J. 241 (2014) 344. https://doi.org/10.1016/j.cej.2013.10.076
  23. J. Di, J.X. Xia, S. Yin, H. Xu, M.Q. He, H.M. Li, L. Xu, Y.P. Jiang, RSC Adv. 3 (2013) 19624. https://doi.org/10.1039/c3ra42269k
  24. J.X. Sun, Y.P. Yuan, L.G. Qiu, X. Jiang, A.J. Xie, Y.H. Shen, J.F. Zhu, Dalton Trans. 41 (2012) 6756. https://doi.org/10.1039/c2dt12474b
  25. H. Katsumata, Y. Tachi, T. Suzuki, S. Kaneco, RSC Adv. 4 (2014) 21405. https://doi.org/10.1039/C4RA02511C
  26. J.Y. Zhang, Y.S. Wang, J. Jin, J. Zhang, F. Huang, J.G. Yu, ACS Appl. Mater. Interfaces 5 (2013) 10317. https://doi.org/10.1021/am403327g
  27. X.F. Chen, J. Wei, R.J. Hou, Y. Liang, Z.L. Xie, Y.G. Zhu, X.W. Zhang, H.T. Wang, Appl. Catal. B: Environ. 188 (2016) 342. https://doi.org/10.1016/j.apcatb.2016.02.012
  28. J. Li, M. Zhang, Q.Y. Li, J.J. Yang, Appl. Surf. Sci. 391 (2017) 184. https://doi.org/10.1016/j.apsusc.2016.06.145
  29. N.A. Abdelwahab, F.M. Helaly, J. Ind. Eng. Chem. 50 (2017) 162. https://doi.org/10.1016/j.jiec.2017.02.010
  30. D. Jiang, Y. Xu, B. Hou, D. Wu, Y.H. Sun, J. Solid State Chem. 180 (2007) 1787. https://doi.org/10.1016/j.jssc.2007.03.010
  31. C.P. Li, J. Wang, H. Guo, S.J. Ding, J. Colloid Interfaces Sci. 458 (2015) 1. https://doi.org/10.1016/j.jcis.2015.07.025
  32. R.A. Rather, S. Singh, B. Pal, J. Ind. Eng. Chem. 37 (2016) 288. https://doi.org/10.1016/j.jiec.2016.03.039
  33. E. Pajootan, M. Rahimdokht, M. Arami, J. Ind. Eng. Chem. 55 (2017) 149. https://doi.org/10.1016/j.jiec.2017.06.039
  34. J.H. Zhang, L.L. Zhang, S.Y. Zhou, H. Zhong, Y.J. Zhao, X. Wang, J. Ind. Eng. Chem. 20 (2014) 3884. https://doi.org/10.1016/j.jiec.2013.12.094
  35. R.J. Wang, G.H. Jiang, Y.W. Ding, Y. Wang, X.K. Sun, X.H. Wang, W.X. Chen, Acs Appl. Mater. Interfaces 3 (2011) 4154. https://doi.org/10.1021/am201020q
  36. J.Z. Li, M.J. Zhou, Z.F. Ye, H.Q. Wang, C.C. Ma, P.W. Huo, Y.S. Yan, RSC Adv. 5 (2015) 91177. https://doi.org/10.1039/C5RA17360D
  37. P. Zheng, Y. Du, P.R. Chang, X. Ma, Appl. Surf. Sci. 329 (2015) 256. https://doi.org/10.1016/j.apsusc.2014.12.158
  38. Z.F. Ye, J.Z. Li, M.J. Zhou, H.Q. Wang, Y. Ma, P.W. Huo, L.B. Yu, Y.S. Yan, Chem. Eng. J. 304 (2016) 917. https://doi.org/10.1016/j.cej.2016.07.014
  39. Y. Du, P. Zheng, Korean J. Chem. Eng. 31 (2014) 2051. https://doi.org/10.1007/s11814-014-0162-8
  40. S.C. Yan, Z.S. Li, Z.G. Zou, Langmuir 25 (2009) 10397. https://doi.org/10.1021/la900923z
  41. F.H. Liu, J. Yu, G.Y. Tu, L. Qu, J.C. Xiao, Y.D. Liu, L.Z. Wang, J.Y. Lei, J.L. Zhang, Appl. Catal. B: Environ. 201 (2017) 1. https://doi.org/10.1016/j.apcatb.2016.08.001
  42. X. Song, Y. Hu, M.M. Zheng, C.H. Wei, Appl. Catal. B: Environ. 182 (2016) 587. https://doi.org/10.1016/j.apcatb.2015.10.007
  43. I. Papailias, N. Todorova, T. Giannakopoulou, J.G. Yu, D. Dimotikali, C. Trapalis, Catal. Today 280 (2017) 37. https://doi.org/10.1016/j.cattod.2016.06.032
  44. Z. Tong, D. Yang, T. Xiao, Y. Tian, Z. Jiang, Chem. Eng. J. 260 (2015) 117. https://doi.org/10.1016/j.cej.2014.08.072
  45. C.Q. Li, Z.M. Sun, Y.L. Xue, G.Y. Yao, S.L. Zheng, Adv. Powder Technol. 27 (2016) 330. https://doi.org/10.1016/j.apt.2016.01.003
  46. Z. Lu, L. Zeng, W.L. Song, Z.Y. Qin, D.W. Zeng, Ch.S. Xie, Appl. Catal. B: Environ. 202 (2017) 489. https://doi.org/10.1016/j.apcatb.2016.09.052
  47. Z.F. Jiang, K. Qian, C.Z. Zhu, H.L. Sun, W.M. Wan, J.M. Xie, H.M. Li, P.K. Wong, S.Q. Yuan, Appl. Catal. B: Environ. 210 (2017) 194. https://doi.org/10.1016/j.apcatb.2017.03.069
  48. H.G. Yang, G. Liu, S.Z. Qiao, C.H. Sun, Y.G. Jin, S.C. Smith, J. Zhou, H.M. Cheng, G. Q. Lu, J. Am. Chem. Soc. 131 (2009) 4078. https://doi.org/10.1021/ja808790p
  49. X. Xu, Z.H. Gao, Z.D. Cui, Y.Q. Liang, Z.Y. Li, S.L. Zhu, X.J. Yang, J.M. Ma, Acs Appl. Mater. Interfaces 8 (2005) 91.
  50. X.Y. Pan, X.X. Chen, Z.G. Yi, Acs Appl. Mater. Interfaces 8 (2016) 10104. https://doi.org/10.1021/acsami.6b02725
  51. Y.C. Yang, J.W. Wen, J.H. Wei, R. Xiong, J. Shi, C.X. Pan, ACS Appl. Mater Interfaces 5 (2013) 6201. https://doi.org/10.1021/am401167y
  52. A. Thomas, A. Fischer, F. Goettmann, M. Antonietti, J.O. Mueller, R. Schloegl, J.M. Carlsson, Cheminform 18 (2008) 4893.
  53. Z.F. Jiang, D.L. Jiang, Z.X. Yan, D. Liu, K. Qian, J.M. Xie, Appl. Catal. B: Environ. 170-171 (2015) 195. https://doi.org/10.1016/j.apcatb.2015.01.041
  54. M. Reli, P.W. Huo, M. Sihor, N. Ambrozova, I. Troppova, L. Matejova, J. Lang, L. Svoboda, P. Kustrowski, M. Ritz, P. Praus, K. Koci, J. Phys. Chem. A 120 (2016) 8564. https://doi.org/10.1021/acs.jpca.6b07236
  55. C. Xue, T.X. Zhang, S.J. Ding, J.J. Wei, G.D. Yang, ACS Appl. Mater. Interfaces 9 (2017) 16091. https://doi.org/10.1021/acsami.7b00433
  56. P. Sun, G.M. Liu, D. Lv, X. Dong, J.S. Wu, D.J. Wang, RSC Adv. 5 (2015) 52916. https://doi.org/10.1039/C5RA04444H
  57. S.Y. Yang, Z.M. Liu, Y.Q. Jiao, Y.P. Liu, C.W. Ji, Y.F. Zhang, J. Mater. Sci. 49 (2014) 4270. https://doi.org/10.1007/s10853-014-8122-6
  58. Q.J. Xiang, J.G. Yu, M. Jaroniec, J. Phys. Chem. C 115 (2011) 7355. https://doi.org/10.1021/jp200953k
  59. J. Li, B. Shen, Z. Hong, B. Lin, B. Gao, Y. Chen, Chem. Commun. 48 (2012) 12017. https://doi.org/10.1039/c2cc35862j
  60. H.X. Yu, Y.T. Zhang, X.B. Sun, J.D. Liu, H.Q. Zhang, Chem. Eng. J. 237 (2014) 322. https://doi.org/10.1016/j.cej.2013.09.094
  61. Y. Zhang, L.J. Fu, H.M. Yang, Colloid Surf. A 414 (2012) 115. https://doi.org/10.1016/j.colsurfa.2012.08.003
  62. D.Z. Lu, P.F. Fang, X.Z. Liu, S.B. Zhai, C.H. Li, X.N. Zhao, J.Q. Ding, R.Y. Xiong, Appl. Catal. B: Environ. 179 (2015) 558. https://doi.org/10.1016/j.apcatb.2015.05.059
  63. Y.G. Li, X.L. Wei, H.J. Li, R.R. Wang, J. Feng, H. Yun, A.N. Zhou, RSC Adv. 5 (2015) 14074. https://doi.org/10.1039/C4RA14690E
  64. M. Thommes, K. Kaneko, A.V. Neimark, J.P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K.S.W. Sing, Pure Appl. Chem. 38 (2011) 25.
  65. C.Q. Li, Z.m. Sun, Y.l. Xue, G.Y. Yao, S.L. Zheng, Adv. Powder Technol. 27 (2016) 330. https://doi.org/10.1016/j.apt.2016.01.003
  66. L.W. Zhang, H.B. Fu, Y.F. Zhu, Adv. Funct. Mater. 18 (2010) 2180.
  67. K.H. Leong, S.L. Liu, C.S. Lan, P. Saravanan, M. Jang, S. Ibrahim, Appl. Surf. Sci. 358 (2015) 370. https://doi.org/10.1016/j.apsusc.2015.06.184
  68. J.Z. Jiang, L. Ou-yang, L.H. Zhu, A.M. Zheng, J. Zou, X.F. Yi, H.Q. Tang, Carbon 80 (2014) 213. https://doi.org/10.1016/j.carbon.2014.08.059
  69. N. Serpone, D. Lawless, R. Khairutdinov, J. Phys. Chem. 99 (1995) 16646. https://doi.org/10.1021/j100045a026
  70. K. Li, S.M. Gao, Q.Y. Wang, H. Xu, Z.Y. Wang, B.B. Huang, Y. Dai, J. Lu, ACS Appl. Mater. Interfaces 7 (2015) 9023. https://doi.org/10.1021/am508505n
  71. G.Y. Li, X. Nie, J.Y. Chen, Q. Jiang, T.C. An, P.K. Wong, H.M. Zhang, H.J. Zhao, H. Yamashita, Water Res. 86 (2015) 17. https://doi.org/10.1016/j.watres.2015.05.053
  72. M. Kong, Y.Z. Li, X. Chen, T.T. Tian, P.F. Fang, F. Zheng, X.J. Zhao, J. Am. Chem. Soc. 133 (2011) 16414. https://doi.org/10.1021/ja207826q
  73. Y.M. He, J. Cai, T.T. Li, Y. Wu, Y.M. Yi, M.F. Luo, L.H. Zhao, Ind. Eng. Chem. Res. 51 (2011) 14729.
  74. G.R. Li, F. Wang, Q.W. Jiang, X.P. Gao, P.W. Shen, Angew. Chem. 49 (2010) 3653. https://doi.org/10.1002/anie.201000659
  75. J.X. Li, J.H. Xu, W.L. Dai, K.N. Fan, J. Phys. Chem. C 113 (2009) 8343.
  76. X.F. Chen, J. Wei, R.J. Hou, Y. Liang, Z.L. Xie, Y.G. Zhu, X.W. Zhang, H.T. Wang, Appl. Catal. B: Environ. 188 (2016) 342. https://doi.org/10.1016/j.apcatb.2016.02.012
  77. W.G. Tu, Y. Zhou, Q. Liu, S.C. Yan, S.S. Bao, X.Y. Wang, M. Xiao, Z.G. Zou, Adv. Funct. Mater. 23 (2013) 1743. https://doi.org/10.1002/adfm.201202349
  78. C.M. Li, Y.H. Du, D.P. Wang, S.M. Yin, W.G. Tu, Z. Chen, M. Kraft, G. Chen, R. Xu, Adv. Funct. Mater. 27 (2016) 1604328.
  79. Z.Y. Lu, Z. Zhu, D.D. Wang, Z.F. Ma, W.D. Shi, Y.S. Yan, X.X. Zhao, H.J. Dong, L. Yang, Z.H. Fa, Catal. Sci. Technol. 6 (2016) 1367. https://doi.org/10.1039/C5CY01324K
  80. J.Z. Li, Y. Ma, Z.F. Ye, M.J. Zhou, H.Q. Wang, C.C. Ma, D.D. Wang, P.W. Huo, Y.S. Yan, Appl. Catal. B: Environ. 204 (2017) 224. https://doi.org/10.1016/j.apcatb.2016.11.021
  81. M.J. Zhou, D.L. Han, X.L. Liu, C.C. Ma, H.Q. Wang, Y.F. Tang, P.W. Huo, W.D. Shi, Y. S. Yan, J.H. Yang, Appl. Cat. B: Environ. 172-173 (2015) 174. https://doi.org/10.1016/j.apcatb.2015.01.004

Cited by

  1. A ratiometric photoelectrochemical immunosensor based on g-C3N4@TiO2 NTs amplified by signal antibodies-Co3O4 nanoparticle conjugates vol.143, pp.20, 2018, https://doi.org/10.1039/c8an01345d
  2. Compositing Two-Dimensional Materials with TiO2 for Photocatalysis vol.8, pp.12, 2018, https://doi.org/10.3390/catal8120590
  3. Ce doping TiO2/halloysite nanotubes photocatalyst for enhanced electrons transfer and photocatalytic degradation of Tetracycline vol.30, pp.21, 2019, https://doi.org/10.1007/s10854-019-02268-y
  4. Simple synthesis of 3D flower-like g-C3N4/TiO2 composite microspheres for enhanced visible-light photocatalytic activity vol.55, pp.1, 2018, https://doi.org/10.1007/s10853-019-03953-3
  5. Direct Z-Scheme WO3/Graphitic Carbon Nitride Nanocomposites for the Photoreduction of CO2 vol.3, pp.2, 2020, https://doi.org/10.1021/acsanm.9b02083
  6. Fabrication of highly stable CdS/g-C3N4 composite for enhanced photocatalytic degradation of RhB and reduction of CO2 vol.55, pp.8, 2018, https://doi.org/10.1007/s10853-019-04208-x
  7. A comprehensive study on the enhanced photocatlytic activity of a double-shell mesoporous plasmonic Cu@Cu2O/SiO2 as a visible-light driven nanophotocatalyst vol.27, pp.22, 2018, https://doi.org/10.1007/s11356-020-08817-x
  8. Constructing a Stable 2D Layered Ti3C2 MXene Cocatalyst-Assisted TiO2/g-C3N4/Ti3C2 Heterojunction for Tailoring Photocataly vol.34, pp.8, 2018, https://doi.org/10.1021/acs.energyfuels.0c01354
  9. Catalytic decomposition of toxic phosphine gas on the developed nickel ferrite nanocrystals supported by Halloysite nanotubes vol.530, pp.None, 2018, https://doi.org/10.1016/j.apsusc.2020.147264
  10. Development of photocatalytic chip seal for nitric oxide removal on the surface of pavement using g-C3N4/TiO2 composite vol.22, pp.5, 2018, https://doi.org/10.1080/14680629.2019.1687008
  11. Topochemical Intercalation of Graphitic Carbon Nitride with Alkali Metals in Ethylenediamine vol.125, pp.18, 2021, https://doi.org/10.1021/acs.jpcc.1c02688
  12. Construction of Magnetically Retrievable g-C 3 N 4 /TiO 2 -MnFe 2 O 4 Halloysite Composites with Enhanced Visible-Light Photocatalytic Activity vol.16, pp.9, 2018, https://doi.org/10.1142/s1793292021501009
  13. Novel BaSnO 3 /TiO 2 @HNTs Heterojunction Composites with Highly Enhanced Photocatalytic Activity and Stability vol.6, pp.40, 2021, https://doi.org/10.1002/slct.202102834
  14. Rationally constructing of a novel composite photocatalyst with multi charge transfer channels for highly efficient sulfamethoxazole elimination: Mechanism, degradation pathway and DFT calculation vol.426, pp.None, 2018, https://doi.org/10.1016/j.cej.2021.131585
  15. Photodegradation of ciprofloxacin using Z-scheme TiO2/SnO2 nanostructures as photocatalyst vol.16, pp.None, 2018, https://doi.org/10.1016/j.enmm.2021.100466
  16. Fe-N-C catalyst with Fe-NX sites anchored nano carboncubes derived from Fe-Zn-MOFs activate peroxymonosulfate for high-effective degradation of ciprofloxacin: Thermal activation and catalyt vol.424, pp.no.pa, 2022, https://doi.org/10.1016/j.jhazmat.2021.127380