DOI QR코드

DOI QR Code

Nanodiamond/gold nanorod nanocomposites with tunable light-absorptive and local plasmonic properties

  • Lee, Dukhee (School of Chemical Engineering and Material Science, Chung-Ang University) ;
  • Jeong, Seong Hoon (College of Pharmacy, Dongguk University-Seoul) ;
  • Kang, Eunah (School of Chemical Engineering and Material Science, Chung-Ang University)
  • Received : 2017.10.25
  • Accepted : 2018.04.23
  • Published : 2018.09.25

Abstract

Nanodiamonds (NDs) have potential as platform materials for biological and biomedical applications depending on the combinatorial complex designs. Bimetallic nanocomposites with ND and gold nanorods (AuNRs) were synthesized and obtained at tunable UV absorption wavelengths by controlling the aspect ratio of AuNR. The nanodiamond/AuNR nanocomposites (NDAuNR) with fine tuning ultraviolet/visible/near-infrared (UV-vis-NIR) extinction were prepared using a cetyltrimethylammonium bromide (CTAB)-surfactant-based seedless growth method. NDAuNRs varied with UV absorption wavelengths and aspect ratios, providing the surface-enhanced Raman scattering (SERS) effect. Compared to AuNR/800 nm with the same UV absorption wavelength, NDAuNR/800 nm showed 12.1% and 9.8% higher SERS intensity ratios of $I_{1620}/I_{520}$ and $I_{420}/I_{520}$, respectively, for methylene blue of concentration $10^{-5}M$. The enhanced SERS intensity of NDAuNR/800 nm indicates that electron mobility was facilitated at the interface between ND and AuNRs, and a larger contact area owing to a larger aspect ratio resulted in a higher SERS effect. The study demonstrated that NDAuNR nanocomposites enhanced the photo-responsive reactivity in SERS, resulting in potentially promising biomedical applications in sensor, imaging, and photothermal therapy. NDs provide platform substances to magnify gold resonance.

Keywords

Acknowledgement

Supported by : National Research Foundation of Korea (NRF)

References

  1. X. Huang, S. Neretina, M.A. El-Sayed, Adv. Mater. 21 (2009) 4880. https://doi.org/10.1002/adma.200802789
  2. M. Hu, J.Y. Chen, Z.Y. Li, L. Au, G.V. Hartland, X.D. Li, M. Marquez, Y.N. Xia, Chem. Soc. Rev. 35 (2006) 1084. https://doi.org/10.1039/b517615h
  3. X. Huang, I.H. El-Sayed, W. Qian, M.A. El-Sayed, J. Am. Chem. Soc. 128 (2006) 2115. https://doi.org/10.1021/ja057254a
  4. J. Song, X. Yang, O. Jacobson, L. Lin, P. Huang, G. Niu, Q. Ma, X. Chen, ACS Nano 9 (2015) 9199. https://doi.org/10.1021/acsnano.5b03804
  5. K.D. Alexander, K. Skinner, S.P. Zhang, H. Wei, R. Lopez, Nano Lett. 10 (2010) 4488. https://doi.org/10.1021/nl1023172
  6. H. Moon, D. Kumar, H. Kim, C. Sim, J.H. Chang, J.M. Kim, H. Kim, D.K. Lim, ACS Nano 9 (2015) 2711. https://doi.org/10.1021/nn506516p
  7. G.D. Moon, S.W. Choi, X. Cai, W. Li, E.C. Cho, U. Jeong, L.V. Wang, Y. Xia, J. Am. Chem. Soc. 133 (2011) 4762. https://doi.org/10.1021/ja200894u
  8. K.H. Song, C. Kim, C.M. Cobley, Y. Xia, L.V. Wang, Nano Lett. 9 (2009) 183. https://doi.org/10.1021/nl802746w
  9. X. Huang, S. Tang, B. Liu, B. Ren, N. Zheng, Adv. Mater. 23 (2011) 3420. https://doi.org/10.1002/adma.201100905
  10. W. Dong, Y. Li, D. Niu, Z. Ma, J. Gu, Y. Chen, W. Zhao, X. Liu, C. Liu, J. Shi, Adv. Mater. 23 (2011) 5392. https://doi.org/10.1002/adma.201103521
  11. P. Huang, J. Lin, W. Li, P. Rong, Z. Wang, S. Wang, X. Wang, X. Sun, M. Aronova, G. Niu, R.D. Leapman, Z. Nie, X. Chen, Angew. Chem. Int. Ed. 52 (2013) 13958. https://doi.org/10.1002/anie.201308986
  12. H. Ke, J. Wang, S. Tong, Y. Jin, S. Wang, E. Qu, G. Bao, Z. Dai, Theranostics 4 (2013) 12.
  13. Y.K. Kim, S.W. Han, D.H. Min, ACS Appl. Mater. Interfaces 4 (2012) 6545. https://doi.org/10.1021/am301658p
  14. D.K. Lim, A. Barhoumi, R.G. Wylie, G. Reznor, R.S. Langer, D.S. Kohane, Nano Lett. 13 (2013) 4075. https://doi.org/10.1021/nl4014315
  15. Y. Wang, J.T. Chen, X.P. Yan, Anal. Chem. 85 (2013) 2529. https://doi.org/10.1021/ac303747t
  16. K. Turcheniuk, R. Boukherroub, S. Szunerits, J. Mater. Chem. B 3 (2015) 4301.
  17. B. Du, C. Ma, G. Ding, X. Han, D. Li, E. Wang, J. Wang, Small 13 (2017).
  18. B. Jiang, Q. Wu, N. Deng, Y. Chen, L. Zhang, Z. Liang, Y. Zhang, Nanoscale 8 (2016) 4894. https://doi.org/10.1039/C5NR08126B
  19. Y.W. Chen, T.Y. Liu, P.J. Chen, P.H. Chang, S.Y. Chen, Small 12 (2016) 1458. https://doi.org/10.1002/smll.201502917
  20. V.N. Mochalin, O. Shenderova, D. Ho, Y. Gogotsi, Nat. Nanotechnol. 7 (2012) 11. https://doi.org/10.1038/nnano.2011.209
  21. J.J. Taha-Tijerina, T.N. Narayanan, C.S. Tiwary, K. Lozano, M. Chipara, P.M. Ajayan, ACS Appl. Mater Interfaces 6 (2014) 4778. https://doi.org/10.1021/am405575t
  22. A.M. Panich, A.I. Shames, N.A. Sergeev, M. Olszewski, J.K. McDonough, V.N. Mochalin, Y. Gogotsi, J. Phys. C 25 (2013) 245303.
  23. J. Xiao, J.L. Li, P. Liu, G.W. Yang, Nanoscale 6 (2014) 15098. https://doi.org/10.1039/C4NR05246C
  24. L. Zhang, H. Liu, X. Huang, X. Sun, Z. Jiang, R. Schlogl, D. Su, Angew. Chem. Int. Ed. 54 (2015) 15823. https://doi.org/10.1002/anie.201507821
  25. Y.S. Zhu, Y.M. Lin, B.S. Zhang, J.F. Rong, B.N. Zong, D.S. Su, ChemCatChem. 7 (2015) 2840. https://doi.org/10.1002/cctc.201402930
  26. M.K. Kuntumalla, V.V. Siva Srikanth, S. Ravulapalli, U. Gangadharini, H. Ojha, N. R. Desai, C. Bansal, Phys. Chem. Chem. Phys. 17 (2015) 21331. https://doi.org/10.1039/C4CP05236F
  27. Y. Lin, D. Su, ACS Nano 8 (2014) 7823. https://doi.org/10.1021/nn501286v
  28. H.I. Kim, H.N. Kim, S. Weon, G.H. Moon, J.H. Kim, W. Choi, ACS Catal. 6 (2016) 8350. https://doi.org/10.1021/acscatal.6b02726
  29. Y.M. Lin, D.S. Su, ACS Nano 8 (2014) 7823. https://doi.org/10.1021/nn501286v
  30. A.D. Quast, M. Bornstein, B.J. Greydanus, I. Zharov, J.S. Shumaker-Parry, ACS Catal. 6 (2016) 4729. https://doi.org/10.1021/acscatal.6b01243
  31. L.Y. Zhang, H.Y. Liu, X. Huang, X.P. Sun, Z. Jiang, R. Schlogl, D.S. Su, Angew. Chem. Int. Ed. 54 (2015) 15823. https://doi.org/10.1002/anie.201507821
  32. M.R.K. Ali, B. Snyder, M.A. El-Sayed, Langmuir 28 (2012) 9807. https://doi.org/10.1021/la301387p
  33. E.V. Golubina, E.S. Lokteva, A.V. Erokhin, A.A. Veligzhanin, Y.V. Zubavichus, V.A. Likholobov, V.V. Lunin, J. Catal. 344 (2016) 90. https://doi.org/10.1016/j.jcat.2016.08.017
  34. A.I. Gopalan, K.P. Lee, S. Komathi, Biosens. Bioelectron. 26 (2010) 1638. https://doi.org/10.1016/j.bios.2010.08.042
  35. Y.M. Liu, S. Chen, X. Quan, H.T. Yu, H.M. Zhao, Y.B. Zhang, G.H. Chen, J. Phys. Chem. C 117 (2013) 14992. https://doi.org/10.1021/jp4044094
  36. S. Naraginti, A. Sivakumar, Spectrochim. Acta 128 (2014) 357. https://doi.org/10.1016/j.saa.2014.02.083
  37. D. Radziuk, D. Grigoriev, W. Zhang, D.S. Su, H. Mohwald, D. Shchukin, J. Phys. Chem. C 114 (2010) 1835.
  38. O. Kuznetsov, Y. Sun, R. Thaner, A. Bratt, V. Shenoy, M.S. Wong, J. Jones, W.E. Billups, Langmuir 28 (2012) 5243. https://doi.org/10.1021/la204660h
  39. Y.V. Fedoseeva, L.G. Bulusheva, A.V. Okotrub, M.A. Kanygin, D.V. Gorodetskiy, I. P. Asanov, D.V. Vyalikh, A.P. Puzyr, V.S. Bondar, Sci. Rep. 5 (2015) 9379. https://doi.org/10.1038/srep09379
  40. M.C. Kim, D. Lee, S.H. Jeong, S.Y. Lee, E. Kang, ACS Appl. Mater. Interfaces 8 (2016) 34317. https://doi.org/10.1021/acsami.6b10471
  41. M.A. Zhou, A.H. Zhang, Z.X. Dai, Y.P. Feng, C. Zhang, J. Phys. Chem. C 114 (2010) 16541. https://doi.org/10.1021/jp105368j
  42. D.H. Lim, J. Wilcox, J. Phys. Chem. C 116 (2012) 3653. https://doi.org/10.1021/jp210796e
  43. R. Radnik, C. Mohr, P. Claus, Phys. Chem. Chem. Phys. 5 (2003) 172. https://doi.org/10.1039/b207290d
  44. R.R. Naujok, R.V. Duevel, R.M. Corn, Langmuir 9 (1993) 1771. https://doi.org/10.1021/la00031a026
  45. C.J. Orendorff, L. Gearheart, N.R. Jana, C.J. Murphy, Phys. Chem. Chem. Phys. 8 (2006) 165. https://doi.org/10.1039/B512573A
  46. Y.B. He, G.W. Lu, H.M. Shen, Y.Q. Cheng, Q.H. Gong, Appl. Phys. Lett. 107 (2015).
  47. C.Y. Zhang, H.M. Gu, L. Zhou, J. Nanosci. Nanotechnol. 16 (2016) 12382. https://doi.org/10.1166/jnn.2016.12980
  48. G. Goncalves, P.A.A.P. Marques, C.M. Granadeiro, H.I.S. Nogueira, M.K. Singh, J. Gracio, Chem. Mater. 21 (2009) 4796. https://doi.org/10.1021/cm901052s
  49. J. Gersten, A. Nitzan, J. Chem. Phys. 73 (1980) 3023. https://doi.org/10.1063/1.440560

Cited by

  1. Preparation of gold nanorod-incorporated monolith for solid phase extraction of polycyclic aromatic hydrocarbons vol.187, pp.7, 2020, https://doi.org/10.1007/s00604-020-04401-9
  2. Role of gold nanoparticles in advanced biomedical applications vol.2, pp.9, 2020, https://doi.org/10.1039/d0na00472c