Self-Adaptive Smart Grid with Photovoltaics using AiTES

AiTES를 사용한 태양광 발전이 포함된 자가 적응적 스마트 그리드

  • 박성식 (단국대학교 IT 법학협동과정 정보보안) ;
  • 박용범 (단국대학교 소프트웨어학과)
  • Received : 2018.08.28
  • Accepted : 2018.09.28
  • Published : 2018.09.30

Abstract

Smart Grid is an intelligent power grid for efficiently producing and consuming electricity through bi-directional communication between power producers and consumers. As renewable energy develops, the share of renewable energy in the smart grid is increasing. Renewable energy has a problem that it differs from existing power generation methods that can predict and control power generation because the power generation changes in real time. Applying a self-adaptative framework to the Smart Grid will enable efficient operation of the Smart Grid by adapting to the amount of renewable energy power generated in real time. In this paper, we assume that smart villages equipped with photovoltaic power generation facilities are installed, and apply the self-adaptative framework, AiTES, to show that smart grid can be efficiently operated through self adaptation framework.

스마트 그리드는 전력 생산자와 소비자 간의 양방향 통신을 통해 효율적으로 전력을 생산 및 소비하기 위한 지능형 전력망이다. 신재생 에너지가 발전하면서 신재생 에너지가 스마트 그리드에서 차지하는 비율이 점점 높아지고 있다. 신재생 에너지는 발전량이 실시간으로 변하기 때문에 발전량의 예측 및 조절이 가능한 기존의 발전 방식과는 다른 문제점이 있다. 스마트 그리드에 자가 적응 프레임워크를 적용하는 것은 실시간으로 변하는 신재생 에너지의 발전량에 적응함으로써 스마트 그리드의 효율적인 운영을 가능케 할 것이다. 본 논문에서는 태양광 발전 시설이 설치된 스마트 마을을 가정하고 이에 자가 적응 프레임워크인 AiTES 를 적용 하여 자가 적응 프레임워크를 통해 스마트 그리드의 효율적인 운영이 가능함을 보였다.

Keywords

Acknowledgement

Supported by : 한국연구재단

References

  1. Saad, W., Han, Z., Poor, H. V., Basar, T., "Game-theoretic methods for the smart grid: An overview of microgrid systems, demand-side management, and smart grid communications," IEEE Signal Processing Magazine, Vol. 29, No. 5, pp. 86-105, 2012. https://doi.org/10.1109/MSP.2012.2186410
  2. Nunna, H. K., Doolla, S., "Demand response in smart distribution system with multiple microgrids," IEEE transactions on smart grid, Vol. 3, No. 4, pp. 1641-1649, 2012. https://doi.org/10.1109/TSG.2012.2208658
  3. Wu, J., Guan, X., "Coordinated multi-microgrids optimal control algorithm for smart distribution management system," IEEE Transactions on Smart Grid, Vol. 4, No. 4, pp. 217-2181, 2013.
  4. Kanchev, H., Lu, D., Colas, F., Lazarov, V., Francois, B., "Energy management and operational planning of a microgrid with a PV-based active generator for smart grid applications," IEEE transactions on industrial electronics, Vol. 58, No. 10, pp. 4583-4592, 2011. https://doi.org/10.1109/TIE.2011.2119451
  5. Ziadi, Z., Taira, S., Oshiro, M., Funabashi, T., "Optimal power scheduling for smart grids considering controllable loads and high penetration of photovoltaic generation," IEEE Transactions on Smart Grid, Vol. 5, No. 5, pp. 2350-2359, 2014. https://doi.org/10.1109/TSG.2014.2323969
  6. Tanaka, K., Yoza, A., Ogimi, K., Yona, A., Senjyu, T., Funabashi, T., Kim, C. H., "Optimal operation of DC smart house system by controllable loads based on smart grid topology," Renewable Energy, Vol. 39, No. 1, pp. 132-139, 2012. https://doi.org/10.1016/j.renene.2011.07.026
  7. Oreizy, P., Gorlick, M. M., Taylor, R. N., Heimhigner, D., Johnson, G., Medvidovic, N., Wolf, A. L., "An architecture-based approach to self-adaptive software," IEEE Intelligent Systems and Their Applications, Vol. 14, No. 3, pp. 54-62, 1999.
  8. Ahn, J., Park, Y. B., "AiTES: The Self-Adaptive framework for environment change of IoT," In Computer Applications and Information Processing Technology (CAIPT), pp. 1-4, 2017.
  9. Tascikaraoglu, A., Erdinc, O., Uzunoglu, M., Karakas, A., "An adaptive load dispatching and forecasting strategy for a virtual power plant including renewable energy conversion units." Applied Energy, Vol. 119, pp. 445-453, 2014.
  10. Vale, Z. A., Morais, H., Khodr, H., "Intelligent multi-player smart grid management considering distributed energy resources and demand response," In Power and Energy Society General Meeting, pp. 1-7, 2010.
  11. Wang, B., Sechilariu, M., Locment, F., "Intelligent DC microgrid with smart grid communications: Control strategy consideration and design," IEEE transactions on smart grid, Vol. 3, No. 4, pp. 2148-2156, 2012. https://doi.org/10.1109/TSG.2012.2217764
  12. Lombardi, P., Powalko, M., Rudion, K, "Optimal operation of a virtual power plant," In Power & Energy Society General Meeting, pp. 1-6, 2009.
  13. Nosratabadi, S. M., Hooshmand, R. A., Gholipour, E, "A comprehensive review on microgrid and virtual power plant concepts employed for distributed energy resources scheduling in power systems," Renewable and Sustainable Energy Reviews, Vol. 67, pp. 341-363, 2017.
  14. Hernandez, L., Baladron, C., Aguiar, J. M., Carro, B., Sanchez-Esguevillas, A., Lloret, J., Cook, D, "A multi-agent system architecture for smart grid management and forecasting of energy demand in virtual power plants," IEEE Communications Magazine, Vol. 51, No. 1, pp. 106-113, 2013. https://doi.org/10.1109/MCOM.2013.6400446
  15. Ju, L., Tan, Z., Yuan, J., Tan, Q., Li, H., Dong, F, "A bi-level stochastic scheduling optimization model for a virtual power plant connected to a wind-photovoltaic-energy storage system considering the uncertainty and demand response," Applied energy, Vol. 171, pp. 184-199, 2016.
  16. Giuntoli, M., Poli, D, "Optimized thermal and electrical scheduling of a large scale virtual power plant in the presence of energy storages," IEEE Transactions on Smart Grid, Vol. 4, No. 2, pp. 942-955, 2013 https://doi.org/10.1109/TSG.2012.2227513
  17. Ahn, J., Park, Y. B, "An Implementation of a Dynamic Module Changing Framework of a Self-adaptive System for Smart Home with Changing Environment," International Information Institute (Tokyo). Information, Vol. 21, No. 3, pp. 987-995, 2018
  18. An, J., Park, Y. B, "Methodology for Automatic Ontology Generation Using Database Schema Information," Mobile Information Systems, 2018.