DOI QR코드

DOI QR Code

The Effects of Sodium Doping on the Electrical Properties of the Cu2ZnSn(S,Se)4 (CZTSSe) Solar Cells

용액법을 이용한 나트륨 도핑에 따른 Cu2ZnSnSe4 (CZTSSe) 박막의 합성 및 특성 평가

  • Shim, Hongjae (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jihun (Department of Materials Science and Engineering, Chonnam National University) ;
  • Gang, MyungGil (Department of Materials Science and Engineering, Chonnam National University) ;
  • Kim, Jinhyeok (Department of Materials Science and Engineering, Chonnam National University)
  • 심홍재 (신소재공학과, 광전자융합기술연구소, 전남대학교) ;
  • 김지훈 (신소재공학과, 광전자융합기술연구소, 전남대학교) ;
  • 강명길 (신소재공학과, 광전자융합기술연구소, 전남대학교) ;
  • 김진혁 (신소재공학과, 광전자융합기술연구소, 전남대학교)
  • Received : 2018.07.17
  • Accepted : 2018.09.05
  • Published : 2018.10.27

Abstract

$Cu_2ZnSn(S,Se)_4$ (CZTSSe) films were prepared on Mo coated soda lime glass substrates by sulfo-selenization of sputtered stacked Zn-Sn-Cu(CZT) precursor films. The precursor was dried in a capped state with aqueous NaOH solution. The CZT precursor films were sulfo-selenized in the S + Se vapor atmosphere. Sodium was doped during the sulfo-selenization treatment. The effect of sodium doping on the structural and electrical properties of the CZTSSe thin films were studied using FE-SEM(field-emission scanning electron microscopy), XRD(X-ray diffraction), XRF(X-ray fluorescence spectroscopy), dark current, SIMS(secondary ion mass spectrometry), conversion efficiency. The XRD, XRF, FE-SEM, Dark current, SIMS and cell efficiency results indicated that the properties of sulfo-selenized CZTSSe thin films were strongly related to the sodium doping. Further detailed analysis and discussion for effect of sodium doping on the properties CZTSSe thin films will be discussed.

Keywords

References

  1. Jiang, M., Lan, F., Yan, X. and Li, G., Phys. Status Solidi A, 8, 223 (2014).
  2. Fairbrother, A., Fontane, X., Izquierdo-oca, V., Espindola-Rodriguez, M., Lopez- Marino, S., Placidi, M., Lopez-Garcia, J., Perez-Rodriguez, A. and Saucedo, E., ChemPhysChem., 14, 1836 (2013). https://doi.org/10.1002/cphc.201300157
  3. Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y. and Mitzi, D. B., Adv. Energy Mater., 4, 1301465 (2014). https://doi.org/10.1002/aenm.201301465
  4. P. Jackson, D. Hariskos, R. Wuerz, O. Kiowski, A. Bauer, T. M. Friedlmeier, and M. Powalla., Phys. Status Solidi RRL, 9, 28 (2014).
  5. W. M. Hlaing Oo, J. L. Johnson, A. Bhatia, E. A. Lund, M. M. Nowell, M. A. Scarpulla, J. Electron. Mater., 40, 2214 (2011). https://doi.org/10.1007/s11664-011-1729-3
  6. R. Munir, G. S. Jung, Y. M. Ko and B. T. Ahn, Korean J. Mater. Res., 23, 183 (2013). https://doi.org/10.3740/MRSK.2013.23.3.183
  7. J. E. Granata and J. R. Sites, S. Asher and R. J. Matson., 26th ed., p. 387-390 Anaheim (1997).
  8. G. Dagan, F. Abou-Elfotouh, D. J. Dunlavy, R. J. Matson, and D. Cahen, Chem. Mater., 2, 286 (1990). https://doi.org/10.1021/cm00009a019
  9. D. Braunger, D. Hariskos, G. Bilger, U. Rau and H. W. Schock, Thin Solid Films, 361-362, 161 (2000). https://doi.org/10.1016/S0040-6090(99)00777-4
  10. T. Prabhakar and N. Jampana, Sol. Energy Mater. Sol. Cells, 95, 1001 (2011). https://doi.org/10.1016/j.solmat.2010.12.012
  11. R. Caballero, C. A. Kaufmann, T. Eisenbarth, T. Unold, S. Schorr, R. Hesse, R. Klenk and H.-W. Schock, Phys. Status Solidi A, 206, 1049 (2009). https://doi.org/10.1002/pssa.200881144
  12. T. Mise, S. Tajima, T. Fukano, K. Higuchi, T. Washio, K. Jimbo and H. Katagiri, Prog. Photovoltaics: Research and Applications, 24, 1009 (2016). https://doi.org/10.1002/pip.2745
  13. M. Werner, C. M. Sutter-Fella, Y. E. Romanyuk and A. N. Tiwari., Thin Solid Films, 582, 308 (2015). https://doi.org/10.1016/j.tsf.2014.10.043
  14. M. Ruckh, D. Schmid, M. Kaiser, R. Schaffler, T. Walter, H. W. Schock, Sol. Energy Mater. Sol. Cells, 41-42, 335 (1996). https://doi.org/10.1016/0927-0248(95)00105-0
  15. A. Redinger, K. Hones, X. Fontane, V. Izquierdo-Roca, E. Saucedo, N. Valle, A. Perez-Rodriguez and S. Siebentritt, Appl. Phys. Lett., 98, 101907 (2011). https://doi.org/10.1063/1.3558706
  16. Y. Y. Yoo, C. W. Hong, M. G. Gang, S. W. Shin, Y. B. Kim, J.-H. Moon, Y. J. Lee and J. H. Kim, Korean J. Mater. Res., 23, 613 (2013). https://doi.org/10.3740/MRSK.2013.23.11.613
  17. T. Gershon, B. Shin, N. Bojarczuk, M. Hopstaken, D. B. Mitzi and S. Guha., Adv. Energy Mater., 5, 1400849 (2015). https://doi.org/10.1002/aenm.201400849
  18. U. Rau, M. Schmitt, D. Hilburger, F. Engelhardt, O. Seifert, J. Parisi, W. Riedl, J. Rimmasch and F. Karg, in Proc. 25th ed., p. 1005, Photovoltaics Specialists Conf., Washington, DC, IEEE, New York (1996).