DOI QR코드

DOI QR Code

Application of FE approach to deformation analysis of RC elements under direct tension

  • Jakubovskis, Ronaldas (Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VGTU)) ;
  • Kupliauskas, Rimantas (Department of Storm-Water Network, Grinda Ltd.) ;
  • Rimkus, Arvydas (Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VGTU)) ;
  • Gribniak, Viktor (Laboratory of Innovative Building Structures, Vilnius Gediminas Technical University (VGTU))
  • Received : 2018.02.19
  • Accepted : 2018.09.18
  • Published : 2018.11.10

Abstract

Heterogeneous structure and, particularly, low resistance to tension stresses leads to different mechanical properties of the concrete in different loading situations. To solve this problem, the tension zone of concrete elements is reinforced. Development of the cracks, however, becomes even more complicated in the presence of bar reinforcement. Direct tension test is the common layout for analyzing mechanical properties of reinforced concrete. This study investigates scatter of the test results related with arrangement of bar reinforcement. It employs results of six elements with square $60{\times}60mm$ cross-section reinforced with one or four 5 mm bars. Differently to the common research practice (limited to the average deformation response), this study presents recordings of numerous strain gauges, which allows to monitor/assess evolution of the deformations during the test. A simple procedure for variation assessment of elasticity modulus of the concrete is proposed. The variation analysis reveals different deformation behavior of the concrete in the prisms with different distribution of the reinforcement bars. Application of finite element approach to carefully collected experimental data has revealed the effects, which were neglected during the test results interpretation stage.

Keywords

Acknowledgement

Supported by : Council of Lithuania

References

  1. Beeby, A.W. (1978), "Corrosion of reinforcing steel in concrete and its relation to cracking", Struct. Eng., 56(3), 77-81.
  2. Borosnyoi, A. and Snobli, I. (2010), "Crack width variation within the concrete cover of reinforced concrete members", Eptoanyag-J. Silic. Bas. Compos. Mater., 62(3), 70-74.
  3. Broms, B.B. (1965), "Crack width and crack spacing in reinforced concrete members", ACI J. Proc., 62(10), 1237-1256.
  4. Broms, B.B. and Lutz L.A. (1965), "Effects of arrangement of reinforcement on crack width and spacing of reinforced concrete members", ACI J. Proc., 62(11), 1395-1410.
  5. Caduff, D. and Van Mier, J.G.M. (2010), "Analysis of compressive fracture of three different concretes by means of 3D-digital image correlation and vacuum impregnation", Cement Concrete Compos., 32(4), 281-290. https://doi.org/10.1016/j.cemconcomp.2010.01.003
  6. Caldentey, A.P., Peiretti, H.C., Iribarren, J.P. and Soto, A.G. (2013), "Cracking of RC members revisited: influence of cover, ${\varphi}/{\rho}eff$ and stirrup spacing - an experimental and theoretical study", Struct. Concrete, 14(1), 69-78. https://doi.org/10.1002/suco.201200016
  7. Chen, Z., Xu, J., Chen, Y. and Su, Y. (2016), "Seismic behavior of T-shaped steel reinforced high strength concrete short-limb shear walls under low cyclic reversed loading", Struct. Eng. Mech., 57(4), 681-701. https://doi.org/10.12989/SEM.2016.57.4.681
  8. Chiaia, B., Van Mier, J.G.M. and Vervuurt, A. (1998), "Crack growth mechanisms in four different concretes: Microscopic observations and fractal analysis", Cement Concrete Res., 28(1), 103-114. https://doi.org/10.1016/S0008-8846(97)00221-4
  9. Clark, A.P. (1946), "Comparative bond efficiency of deformed concrete reinforcing bars", ACI J. Proc., 43(11), 381-400.
  10. Diamond, S. (2004), "The microstructure of cement paste and concrete - a visual primer", Cement Concrete Compos., 26(8), 919-933. https://doi.org/10.1016/j.cemconcomp.2004.02.028
  11. Elaqra, H., Godin, N., Peix, G., R'Mili, M. and Fantozzi, G. (2007), "Damage evolution analysis in mortar, during compressive loading using acoustic emission and X-ray tomography: Effects of the sand/cement ratio", Cement Concrete Res., 37(5), 703-713. https://doi.org/10.1016/j.cemconres.2007.02.008
  12. Goto, Y. (1971), "Cracks formed in concrete around deformed tension bars", ACI J. Proc., 68(4), 244-251.
  13. Gribniak, V., Caldentey, A.P., Kaklauskas, G., Rimkus, A. and Sokolov, A. (2016a), "Effect of arrangement of tensile reinforcement on flexural stiffness and cracking", Eng. Struct., 124, 418-428. https://doi.org/10.1016/j.engstruct.2016.06.026
  14. Gribniak, V., Cervenka, V. and Kaklauskas, G. (2013a), "Deflection prediction of reinforced concrete beams by design codes and computer simulation", Eng. Struct., 56, 2175-2186. https://doi.org/10.1016/j.engstruct.2013.08.045
  15. Gribniak, V., Jakubovskis, R., Rimkus, A., Ng, P.-L. and Hui, D. (2018), "Experimental and numerical analysis of strain gradient in tensile concrete prisms reinforced with multiple bars", Constr. Build. Mater., 187, 572-583. https://doi.org/10.1016/j.conbuildmat.2018.07.152
  16. Gribniak, V., Kaklauskas, G., Kliukas, R. and Jakubovskis, R. (2013b), "Shrinkage effect on short-term deformation behavior of reinforced concrete - when it should not be neglected", Mater. Des., 51, 1060-1070.
  17. Gribniak, V., Mang, H.A., Kupliauskas, R. and Kaklauskas, G. (2015), "Stochastic tension-stiffening approach for the solution of serviceability problems in reinforced concrete: Constitutive modelling", Comput.-Aid. Civil Infrastruct. Eng., 30(9), 684-702.
  18. Gribniak, V., Mang, H.A., Kupliauskas, R., Kaklauskas, G. and Juozapaitis, A. (2016b), "Stochastic tension-stiffening approach for the solution of serviceability problems in reinforced concrete: Exploration of predictive capacity", Comput.-Aid. Civil Infrastruct. Eng., 31(6), 416-431.
  19. Gribniak, V., Rimkus, A., Torres, L. and Jakstaite, R. (2017), "Deformation analysis of RC ties: Representative geometry", Struct. Concrete, 18(4), 634-647. https://doi.org/10.1002/suco.201600105
  20. Gudonis, E., Rimkus, A., Kaklauskas, G., Gribniak, V. and Kupliauskas, R. (2014), "Experimental investigation on deformation behavior of RC ties", Proceedings of the 19th International Conference Mechanika, Kaunas, Lithuania.
  21. Hordijk, D.A. (1991), "Local approach to fatigue of concrete", Ph.D. Dissertation, Delft University of Technology, Delft, the Netherlands.
  22. Hwang, L.S. (1983), "Behaviour of reinforced concrete in tension at post-cracking range", M.Sc. Dissertation, University of Manitoba, Winnipeg, Canada.
  23. Ingaffea, A.R., Gerstle, W.H., Gergely, P. and Saouma, V. (1984), "Fracture mechanics of bond in reinforced concrete", J. Struct. Eng., 110(4), 871-890. https://doi.org/10.1061/(ASCE)0733-9445(1984)110:4(871)
  24. Jakubovskis, R., Kaklauskas, G., Gribniak, V., Weber, A. and Juknys, M. (2014), "Serviceability analysis of concrete beams with different arrangement of GFRP bars in the tensile zone", J. Compos. Constr., 18, Paper ID: 04014005.
  25. Jendele, L. and Cervenka, J. (2006), "Finite element modelling of reinforcement with bond", Comput. Struct., 84(28), 1780-1791. https://doi.org/10.1016/j.compstruc.2006.04.010
  26. Lee, G.Y. and Kim, W. (2009), "Cracking and tension stiffening behavior of high-strength concrete tension members subjected to axial load", Adv. Struct. Eng., 12(2), 127-137. https://doi.org/10.1260/136943309788251614
  27. Man, H.K. and Van Mier, J.G.M. (2011), "Damage distribution and size effect in numerical concrete from lattice analyses", Cement Concrete Compos., 33(9), 867-880. https://doi.org/10.1016/j.cemconcomp.2011.01.008
  28. Mang, C., Jason, L. and Davenne, L. (2016), "Crack opening estimate in reinforced concrete walls using a steel-concrete bond model", Arch. Civil Mech. Eng., 16, 422-436.
  29. Michou, A., Hilaire, A., Benboudjema, F., Nahas, G., Wyniecki, P. and Berthaud, Y. (2015), "Reinforcement-concrete bond behavior: Experimentation in drying conditions and meso-scale modelling", Eng. Struct., 101, 570-582. https://doi.org/10.1016/j.engstruct.2015.07.028
  30. Otsuka, K. and Ozaka, Y. (1992), "Group effects on anchorage strength of deformed bars embedded in massive concrete block", Proceedings of the International Conference - Bond in Concrete from Research to Practice, Riga, Latvia.
  31. Patel, K.A., Chaudhary, S. and Nagpal, A.K. (2016), "A tension stiffening model for analysis of RC flexural members under service load", Comput. Concrete, 17(1), 29-51. https://doi.org/10.12989/cac.2016.17.1.029
  32. Prado, E.P. and Van Mier, J.G.M. (2003), "Effect of particle structure on mode I fracture process in concrete", Eng. Fract. Mech., 70(14), 1793-1807. https://doi.org/10.1016/S0013-7944(03)00125-5
  33. Purainer, R. (2005), "Last-und verformungsverhalten von stahlbetonflachentragwerken unter zweiaxialer zugbeanspruchung", Ph.D. Dissertation, University of the Federal Armed Forces, Munich, Germany.
  34. Rimkus, A., Jakstaite, R., Kupliauskas, R., Torres, L. and Gribniak, V. (2017), "Experimental identification of cracking parameters of concrete ties with different reinforcement and testing layouts", Proc. Eng., 172, 930-936.
  35. Rostasy, F., Koch, R. and Leonhardt, F. (1976), "Zur mindestbewehrung fur zwang von aussenwanden aus stahlleichtbeton", Deutscher Ausschuss fur Stahlbeton, 267, 1-107.
  36. Schlangen, E. and Van Mier, J.G.M. (1992), "Experimental and numerical analysis of micro-mechanisms of fracture of cementbased composites", Cement Concrete Compos., 14(2), 105-118. https://doi.org/10.1016/0958-9465(92)90004-F
  37. Shiotania, T., Bisschopa, J. and Van Mier, J.G.M. (2003), "Temporal and spatial development of drying shrinkage cracking in cement-based materials", Eng. Fract. Mech., 70(12), 1509-1525. https://doi.org/10.1016/S0013-7944(02)00150-9
  38. Theiner, Y. and Hofstetter, G. (2009), "Numerical prediction of crack propagation and crack widths in concrete structures", Eng. Struct., 31(8), 1832-1840. https://doi.org/10.1016/j.engstruct.2009.02.041
  39. Tijssens, M.G.A., Sluys, L.J. and Van der Giessen, E. (2001), "Simulation of fracture of cementitious composites with explicit modeling of micro structural features", Eng. Fract. Mech., 68(11), 1245-1263. https://doi.org/10.1016/S0013-7944(01)00017-0
  40. Van Mier, J.G.M. (1991), "Mode I fracture of concrete: Discontinuous crack growth and crack interface grain bridging", Cement Concrete Res., 21(1), 1-15. https://doi.org/10.1016/0008-8846(91)90025-D
  41. Van Mier, J.G.M. and Van Vliet, M.R.A. (2003), "Influence of microstructure of concrete on size/scale effects in tensile fracture", Eng. Fract. Mech., 70(16), 2281-2306. https://doi.org/10.1016/S0013-7944(02)00222-9
  42. Williams, A. (1986), Test on Large Reinforced Concrete Elements Subjected to Direct Tension, Technical Report 562, Cement and Concrete Association, Wexham Springs.

Cited by

  1. CHARACTERIZATIONS ON FRACTURE PROCESS ZONE OF PLAIN CONCRETE vol.25, pp.8, 2019, https://doi.org/10.3846/jcem.2019.10799