DOI QR코드

DOI QR Code

유한요소해석 및 실험에 의한 S45C 시편의 고주파 유도경화에 관한 연구

A Study on High Frequency Induction Hardening of S45C Specimen by FEA and Experiment

  • 박관석 (대성종합열처리) ;
  • 최진규 (경상대학교 대학원 기계항공공학부, ERI) ;
  • 이석순 (경상대학교 대학원 기계항공공학부, ERI)
  • Park, Kwan-Seok (Daesung Total Heat Treatment CO.) ;
  • Choi, Jin-kyu (School of Mechanical and Aerospace Engineering, Gyeongsang National University, ERI) ;
  • Lee, Seok-Soon (School of Mechanical and Aerospace Engineering, Gyeongsang National University, ERI)
  • 투고 : 2018.02.28
  • 심사 : 2018.05.24
  • 발행 : 2018.10.31

초록

본 연구에서는 전자기-열 연동 모사를 기반으로 한 고주파 유도경화 해석방법을 제안하였다. 고주파 유도가열 해석 시 온도에 따른 재료의 물성치 변화 및 냉각 요소를 고려한 유한요소해석 및 이를 S45C 시편을 이용한 고주파 유도경화 실험결과와 비교하였다. S45C 시편을 마이크로 비커스를 사용하여 경도를 측정하여 경화깊이를 확인하였고 이를 유한요소해석 결과와 비교하였다. 고주파 유도가열 해석결과 온도는 S45C의 A2변태점인 $750^{\circ}C$도 이상 가열되었으며, 급랭 시 $200^{\circ}C$이하였다. 유한요소해석결과와 실험에 의한 경화깊이 차이는 0.2mm 수준인 것을 확인할 수 있었다.

In this study, we proposed a high frequency induction hardening analysis method based on electromagnetic-thermal co-simulation. In the high frequency induction heating analysis, the results of the finite element analysis (FEA) (considering the change of the material property and the cooling factor according to the temperature) and those of the high frequency induction hardening experiment (using the S45C specimen) were compared. The hardness of the S45C specimens was measured using the micro Vickers hardness test to determine the depth of hardening. The measurement results were then compared with the results of FEA. The result of high frequency induction heating analysis showed that the temperature was more than $750^{\circ}C$, which is the A2 transformation point of S45C, while the temperature during quenching was below $200^{\circ}C$. The results showed that the difference of the depth of hardening between the FEA and the experiment is 0.2mm.

키워드

참고문헌

  1. K. E. Telning, "Steel and Its Heat Treatment," Elsevier, pp.432-451, 1984.
  2. N. F. D. S. Guterres, Rusnaldy and Widodo, "The Effect of Temperature in Induction Surface Hardening on the Distortion of Gear," IOP Conf. Series : Materials Science and Engineering, 202, 012092, 2017.
  3. I. Y. Lee, S. M. Tak, I, S, Pack and S. S. Lee, "Comparative Study on Numerical Analysis using Co-simulation and Experimental Results for High Frequency Induction Heating on SCM440 Round Bar," Journal of The Society for Aerospace System Engineering, Vol.11, No.3, pp.1-7, 2017.
  4. D. W. Oh, T. H. Kim, K. H. Do, J. M. Park and J. H. Lee, "Design and Sensitivity Analysis of Design Factors for Induction Heating System," Journal of The Korean Society for Heat Treatment, Vol.26, No.5, pp.233-240, 2013. https://doi.org/10.12656/jksht.2013.26.5.233
  5. H. C. Ji, B. Wang and X. B. Fu, "Study on the Induction Heating of the Work Piece before Gear Rolling Process," AIP Conference Proceedings, 120010, 1896.
  6. J. K. Choi, K. S. Nam, J. K. Kim, H. M. Choi, S. H. Yeum and S. S. Lee, "Study on Hardening Depth by Induction Hardening Analysis of Sprocket Using FEA and Experiment Result," Journal of the Korean Society for Precision Engineering, Vol.33, No.5, pp.393-400, 2016. https://doi.org/10.7736/KSPE.2016.33.5.393
  7. Dassault systems, "Benchmarks Manual, 1.8 Elemctromagnetic analysis," 2012.
  8. Dassault systems, "Workshop 1. Induction Heating of a Cylinderical Rod," 2016.
  9. D. Tong, J, Gu and G. E. Totten, "Numerical simulation of induction hardening of cylindrical part based on multiphysics coupling," Modeling and Simulation in Materials Science and Engineering. 25. 035009, 2017.
  10. Heat transfer coefficient : http://www.thermopedia.com/content/841/
  11. Methods of measuring case depth for steel hardened by flame or induction hardening process, KS D 0027(Material part of Korean Industrial Standard)