DOI QR코드

DOI QR Code

Electronic transport properties of linear carbon chains encapsulated inside single-walled carbon nanotubes

  • Tojo, Tomohiro (Department of Electrical and Electronic Information Engineering, Toyohashi University of Technology) ;
  • Kang, Cheon Soo (Faculty of Engineering, Shinshu University) ;
  • Hayashi, Takuya (Faculty of Engineering, Shinshu University) ;
  • Kim, Yoong Ahm (Department of Polymer Engineering, Graduate School, School of Polymer Science and Engineering & Alan G. MacDiarmid Energy Research Institute, Chonnam National University)
  • Received : 2018.01.30
  • Accepted : 2018.03.09
  • Published : 2018.10.31

Abstract

Linear carbon chains (LCCs) encapsulated inside the hollow cores of carbon nanotubes (CNTs) have been experimentally synthesized and structurally characterized by Raman spectroscopy and transmission electron microscopy. However, in terms of electronic conductivity, their transportation mechanism has not been investigated theoretically or experimentally. In this study, the density of states and quantum conductance spectra were simulated through density functional theory combined with the non-equilibrium Green function method. The encapsulated LCCs inside (5,5), (6,4), and (9,0) single-walled carbon nanotubes (SWCNTs) exhibited a drastic change from metallic to semiconducting or from semiconducting to metallic due to the strong charge transfer between them. On the other hand, the electronic change in the conductance value of LCCs encapsulated inside the (7,4) SWCNT were in good agreement with the superposition of the individual SWCNTs and the isolated LCCs owing to the weak charge transfer.

Keywords

References

  1. Liu M, Artyukhov VI, Lee H, Xu F, Yakobson BI. Carbyne from first principles: chain of C atoms, a nanorod or a nanorope. ACS Nano, 7, 10075 (2013). https://doi.org/10.1021/nn404177r.
  2. Timoshevskii A, Kotrechko S, Matviychuk Y. Atomic structure and mechanical properties of carbyne. Phys Rev B, 91, 245434 (2015). https://doi.org/10.1103/physrevb.91.245434.
  3. Weimer M, Hieringer W, Sala FD, Gorling A. Electronic and optical properties of functionalized carbon chains with the localized Hartree-Fock and conventional Kohn-Sham methods. Chem Phys, 309, 77 (2005). https://doi.org/10.1016/j.chemphys.2004.05.026.
  4. Ming C, Meng FX, Chen X, Zhuang J, Ning XJ. Tuning the electronic and optical properties of monatomic carbon chains. Carbon, 68, 487 (2014). https://doi.org/10.1016/j.carbon.2013.11.025.
  5. Kotrechko S, Timoshevskii A, Kolyvoshko E, Matviychuk Y, Stetsenko N. Thermomechanical stability of carbyne-based nanodevices. Nanoscale Res Lett, 12, 327 (2017). https://doi.org/10.1186/s11671-017-2099-4.
  6. Alkorta I, Elguero J. Polyynes vs. cumulenes: their possible use as molecular wires. Struct Chem, 16, 77 (2005). https://doi.org/10.1007/s11224-005-1089-9.
  7. Casari CS, Bassi AL, Ravagnan L, Siviero F, Lenardi C, Piseri P, Bongiorno G, Bottani CE, Milani P. Chemical and thermal stability of carbyne-like structures in cluster-assembled carbon films. Phys Rev B, 69, 075422 (2004). https://doi.org/10.1103/ physrevb.69.075422.
  8. Tsuji M, Tsuji T, Kuboyama S, Yoon SH, Korai Y, Tsujimoto T, Kubo K, Mori A, Mochida I. Formation of hydrogen-capped polyynes by laser ablation of graphite particles suspended in solution. Chem Phys Lett, 355, 101 (2002). https://doi.org/10.1016/s0009-2614(02)00192-6.
  9. Chalifoux WA, Tykwinski RR. Synthesis of polyynes to model the sp-carbon allotrope carbyne. Nat Chem, 2, 967 (2010). https://doi.org/10.1038/nchem.828.
  10. Jin C, Lan H, Peng L, Suenaga K, Iijima S. Deriving carbon atomic chains from graphene. Phys Rev Lett, 102, 205501 (2009). https://doi.org/10.1103/physrevlett.102.205501.
  11. Rinzler AG, Hafner JH, Nikolaev P, Nordlander P, Colbert DT, Smalley RE, Lou L, Kim SG, Tomanek D. Unraveling nanotubes: field emission from an atomic wire. Science, 269, 1550 (1995). https://doi.org/10.1126/science.269.5230.1550.
  12. Nishide D, Dohi H, Wakabayashi T, Nishibori E, Aoyagi S, Ishida M, Kikuchi S, Kitaura R, Sugai T, Sakata M, et al. Single-wall carbon nanotubes encaging linear chain $C_{10}H_2$ polyyne molecules inside. Chem Phys Lett, 428, 356 (2006). https://doi.org/10.1016/j.cplett.2006.07.016.
  13. Zhao C, Kitaura R, Hara H, Irle S, Shinohara H. Growth of linear carbon chains inside thin double-wall carbon nanotubes. J Phys Chem C, 115, 13166 (2011). https://doi.org/10.1021/jp201647m.
  14. Zhao X, Ando Y, Liu Y, Jinno M, Suzuki T. carbon nanowire made of a long linear carbon chain inserted inside a multiwalled carbon nanotube. Phys Rev Lett, 90, 187401 (2003). https://doi.org/10.1103/physrevlett.90.187401.
  15. Shi L, Rohringer P, Suenaga K, Niimi Y, Kotakoski J, Meyer JC, Peterlik H, Wanko M, Cahangirov S, Rubio A, et al. Confined linear carbon chains as a route to bulk carbyne. Nat Mater, 15, 634 (2016). https://doi.org/10.1038/nmat4617.
  16. Muramatsu H, Hayashi T, Kim YA, Shimamoto D, Endo M, Terrones M, Dresselhaus MS. Synthesis and isolation of molybdenum atomic wires. Nano Lett, 8, 237 (2008). https://doi.org/10.1021/nl0725188.
  17. Kitaura R, Nakanishi R, Saito T, Yoshikawa H, Awaga K, Shinohara H. High-yield synthesis of ultrathin metal nanowires in carbon nanotubes. Angew Chem Int Ed, 48, 8298 (2009). https://doi.org/10.1002/anie.200902615.
  18. Lagow RJ, Kampa JJ, Wei HC, Battle SL, Genge JW, Laude DA, Harper CJ, Bau R, Stevens RC, Haw JF, et al. Synthesis of linear acetylenic carbon: the "sp" carbon allotrope. Science, 267, 362 (1995). https://doi.org/10.1126/science.267.5196.362.
  19. Romdhane FB, Adjizian JJ, Charlier JC, Banhart F. Electrical transport through atomic carbon chains: the role of contacts. Carbon, 122, 92 (2017). https://doi.org/10.1016/j.carbon.2017.06.039.
  20. Kang CS, Fujisawa K, Ko YI, Muramatsu H, Hayashi T, Endo M, Kim HJ, Lim D, Kim JH, Jung YC, et al. Linear carbon chains inside multi-walled carbon nanotubes: growth mechanism, thermal stability and electrical properties. Carbon, 107, 217 (2016). https://doi.org/10.1016/j.carbon.2016.05.069.
  21. Wanko M, Cahangirov S, Shi L, Rohringer P, Lapin ZJ, Novotny L, Ayala P, Pichler T, Rubio A. Polyyne electronic and vibrational properties under environmental interactions. Phys Rev B, 94, 195422 (2016). https://doi.org/10.1103/physrevb.94.195422.
  22. Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys Rev, 136, B864 (1964). https://doi.org/10.1103/physrev.136.b864.
  23. Kohn W, Sham LJ. Self-consistent equations including exchange and correlation effects. Phys Rev, 140, A1133 (1965). https://doi.org/10.1103/physrev.140.a1133.
  24. Datta S. Electronic Transport in Mesoscopic Systems, Cambridge University Press, New York, 293 (1995).
  25. Ozaki T, Nishio K, Kino H. Efficient implementation of the nonequilibrium Green function method for electronic transport calculations. Phys Rev B, 81, 035116 (2010). https://doi.org/10.1103/physrevb.81.035116.
  26. Landauer R. Spatial variation of currents and fields due to localized scatterers in metallic conduction. IBM J Res Dev, 1, 223 (1957). https://doi.org/10.1147/rd.13.0223.
  27. Calzolari A, Marzari N, Souza I, Nardelli MB. Ab initiotransport properties of nanostructures from maximally localized Wannier functions. Phys Rev B, 69, 035108 (2004). https://doi.org/10.1103/physrevb.69.035108.
  28. Dresselhaus MS, Dresselhaus G, Saito R, Jorio A. Raman spectroscopy of carbon nanotubes. Phys Rep, 409, 47 (2005). https://doi.org/10.1016/j.physrep.2004.10.006.
  29. OpenMX ver. 3.6, Ozaki T group in the University of Tokyo, 2000. Available from: http://www.openmx-square.org.
  30. Ceperley DM, Alder BJ. Ground state of the electron gas by a stochastic method. Phys Rev Lett, 45, 566 (1980). https://doi.org/10.1103/physrevlett.45.566.
  31. Troullier N, Martine JL. Efficient pseudopotentials for plane-wave calculations. Phys Rev B, 43, 1993 (1991). https://doi.org/10.1103/physrevb.43.1993.
  32. Woods LM, Bădescu SC, Reinecke TL. Adsorption of simple benzene derivatives on carbon nanotubes. Phys Rev B, 75, 155415 (2007). https://doi.org/10.1103/physrevb.75.155415.
  33. Frank S, Poncharal P, Wang ZL, de Heer WA. Carbon nanotube quantum resistors. Science, 280, 1744 (1998). https://doi.org/10.1126/science.280.5370.1744.
  34. Kienle D, Cerda JI, Ghosh AW. Extended Huckel theory for band structure, chemistry, and transport. I. Carbon nanotubes. J Appl Phys, 100, 043714 (2006). https://doi.org/10.1063/1.2259818.
  35. Wei X, Tanaka T, Yomogida Y, Sato N, Saito R, Kataura H. Experimental determination of excitonic band structures of single-walled carbon nanotubes using circular dichroism spectra. Nat Commun, 7, 12899 (2016). https://doi.org/10.1038/ncomms12899.
  36. Ouyang M, Huang JL, Cheung CL, Lieber CM. Energy gaps in "Metallic" single-walled carbon nanotubes. Science, 292, 702 (2001). https://doi.org/10.1126/science.1058853.
  37. Blase X, Benedict LX, Shirley EL, Louie SG. Hybridization effects and metallicity in small radius carbon nanotubes. Phys Rev Lett, 72, 1878 (1994). https://doi.org/10.1103/physrevlett.72.1878.
  38. Tapia A, Aguiler L, Cab C, Medina-Esquivel RA, de Coss R, Canto G. Density functional study of the metallization of a linear carbon chain inside single wall carbon nanotubes. Carbon, 48, 4057 (2010). https://doi.org/10.1016/j.carbon.2010.07.011.