DOI QR코드

DOI QR Code

Effects of surface etching on microstructure and mechanical strength of carbon fibers

  • Kim, Kwan-Woo (Research Laboratory for Multifunctional Carbon Materials, Korea Institute of Carbon Convergence Technology) ;
  • Jeong, Jin-Soo (Department of Organic Materials & Fiber Engineering, Chonbuk National University) ;
  • Chung, Dong Chul (Research Laboratory for Multifunctional Carbon Materials, Korea Institute of Carbon Convergence Technology) ;
  • An, Kay-Hyeok (Department of Carbon and Nano Materials Engineering, Jeonju University) ;
  • Kim, Byung-Joo (Research Laboratory for Multifunctional Carbon Materials, Korea Institute of Carbon Convergence Technology)
  • Received : 2018.02.20
  • Accepted : 2018.03.17
  • Published : 2018.10.31

Abstract

Keywords

References

  1. Herrera-Sosa ML. Valadez-Gonzalez A. Vazquez-Torres H. Mani-Gonzalez PG. Herrera-Franco PJ. Effect of the surface modification using MWCNTs with different L/D by two different methods of deposition on the IFSS of single carbon fiber-epoxy resin composite. Carbon Lett, 24, 18 (2017).
  2. Soutis C. Fiber reinforced composites in aircraft construsction. Prog Aerospace Sci, 41, 143 (2005). https://doi.org/10.1016/j.paerosci.2005.02.004
  3. Paiva MC. Bernardo CA. Nardin M. Mechanical, surface and interfacial characterization of pitch and PAN-based carbon fiber. Carbon, 38, 1323 (2000). https://doi.org/10.1016/S0008-6223(99)00266-3
  4. Dai Z. Zhang B. Shi F. Li M. Zhang Z. Gu Y. Chemical interaction between carbon fibers and surface sizing. App Polym Sci, 124, 2127 (2012). https://doi.org/10.1002/app.35226
  5. Oh SM. Lee SM. Kang DS. Roh JS. Microstructural changes of polyacrylonitrile-based carbon fibers (T300 and T700) due to isothermal oxidation (1): focusing on morphological changes using scanning electron microscopy. Carbon Lett, 18, 18 (2016). https://doi.org/10.5714/CL.2016.18.018
  6. Kim HI. Choi WK. Oh SY. Seo MK. Park SJ. An KH. Lee YS. Kim BJ. Effects of oxyfluorination on surface and mechanical properties of carbon fiber-reinforced polarized-polypropylene matrix composites. Nanosci Nanotechnol, 14, 9097 (2014). https://doi.org/10.1166/jnn.2014.10095
  7. Maradur SP. Kim CH. Kim SY. Kim BH. Kim WC, Yang KS. Preparation of carbon fibers from a lignin copolymer with polyacrylonitrile. Synthetic Metals. 162, 453 (2012). https://doi.org/10.1016/j.synthmet.2012.01.017
  8. Li W. Long D. Miyawaki J. Qiao W. Ling L. Mochida I. Yoon SH. Structural features of polyacrylonitrile-based carbon fibers. Mater sci, 47, 919 (2012). https://doi.org/10.1007/s10853-011-5872-2
  9. Qin X. Lu Y. Xiao H. Wen Y. Yu T. A comparison of the effect of graphitization on microstures and properties of polyacrylonitrile and mesophase pitch-based carbon fibers. Carbon, 50, 4459 (2012). https://doi.org/10.1016/j.carbon.2012.05.024
  10. Edie DD. The effect of processing on the structure and properties of carbon fiber. Carbon, 36, 345 (1998). https://doi.org/10.1016/S0008-6223(97)00185-1
  11. Herrera-Sosa ML. Valadez-Gonzalez A. Vazquez-Torres H. Mani-Gonzalez PG. Herrera-Franco PJ. Effect of the surface modification using MWCNTs with different L/D by two different methods of deposition on the IFSS of single carbon fiber-epoxy resin composite. Carbon Lett, 24, 18 (2017)
  12. Arbab S. Teimoury A. Mirbaha H. Adolphe DC. Noroozi B. Nourpanah P. Optimum stabilization processing parameters for polyacrylonitrile-based carbon nanofibers and their difference with carbon (micro) fiber, 142, 198 (2017). https://doi.org/10.1016/j.polymdegradstab.2017.06.026
  13. Arshad SN. Naraghi M. Chasiotis I. Strong carbon nanofibers from electrospun polyacrylonitrile, Carbon, 49, 1710 (2011). https://doi.org/10.1016/j.carbon.2010.12.056
  14. Liu J. Zhou P. Zhang L. Ma Z. Liang J. Fong H. Thermo-chemical reactions occurring during the oxidative stabilization of electrospun polyacrylonitrile precursor nanofibers and the resulting structural conversions. Carbon, 47, 1087 (2009). https://doi.org/10.1016/j.carbon.2008.12.033
  15. Xie Z. Niu H. Lin T. Continuous polyacrylonitrile nanofiber yarns: preparation and dry-drawing treatment for carbon nanofiber production. RSC Adv, 5, 15147 (2015). https://doi.org/10.1039/C4RA16247A
  16. Wu SH. Qin XH. Effects of the stabilization temperature on the structure and properties of polyacrylonitrile-based stabilized electrospun nanofiber microyarns. Therm Anal Calorim, 116, 303 (2014). https://doi.org/10.1007/s10973-013-3530-4
  17. Cipriani E. Zanetti M. Bracco P. Brunella V. Luda M. Costa L. Crosslinking and carbonization processes in PAN films and nanofibers. Polym Degrad Stab, 123, 178 (2016). https://doi.org/10.1016/j.polymdegradstab.2015.11.008
  18. He JH. Wan YQ. Yu JY. Effect of concentration on electrospun polyacrylonitrile (PAN) nanofibers. Fibers Polym, 9, 140 (2008). https://doi.org/10.1007/s12221-008-0023-3
  19. Lai G. Zhong G. Yue Z. Chen G. Zhang L. Vakili A. Wang Y. Zhu L. Liu J. Fong H. Investigation of post-spinning stretching process on morphological, structural, and mechanical properties of electrospun polyacrylonitrile copolymer nanofibers. Polymer, 52, 519 (2011). https://doi.org/10.1016/j.polymer.2010.11.044
  20. Sun J. Zhao F. Yao U. Jin Z. Liu X. Huang U. High efficient and continuous surface modification of carbon fibers with improved tensile strength and interfacial adhesion. Applied Surface Science, 412, 424 (2017). https://doi.org/10.1016/j.apsusc.2017.03.279
  21. Vautard F. Dentzer J. Nardin M. Schultz J. Defoort B. Influence of surface defects on the tensile strength of carbon fibers. Appl Surf Sci, 322, 185 (2014). https://doi.org/10.1016/j.apsusc.2014.10.066
  22. Moreton R. Watt W. Tensile strengths of carbon fibres. Nature, 247, 360 (1974). https://doi.org/10.1038/247360a0
  23. Yu W. Yao J. Tensile strength and its variation for PAN-based carbon fibers I. Statistical distribution and volume dependence. Appl. Polym. Sci, 101, 3175 (2006). https://doi.org/10.1002/app.23399
  24. Chae HG. Newcomb BA. Gulgunje PV. Liu Y. Gupa KK. Kamath MG. Lyons KM. Ghoshal S. Pramanik C. Giannuzzi L. Sahin K. Chasiotis I. Kumar S. High strength and high modulus carbon fibers. Carbon, 93, 81 (2015). https://doi.org/10.1016/j.carbon.2015.05.016
  25. Kim KW. Lee HM. An JH. Chung DC. An KH. Kim BJ. Recycling and characterization of carbon fibers from carbon fiber reinforced epoxy matrix composites by a novel super-heated-steam method. J Environ Manage, 203, 872 (2017). https://doi.org/10.1016/j.jenvman.2017.05.015
  26. Baek J. Lee HM. Roh JS. Lee HS. Kang HS. Kim BJ. Studies on preparation and applications of polymeric precursor-based activated hard carbons: I. Activation mechanism and microstructure analyses. Microp Mesop Mat, 219, 258 (2016). https://doi.org/10.1016/j.micromeso.2015.07.003
  27. Roh JS. Microstructural changes during activation process of isotopic carbon fibers using $CO_2$ Gas(I)-XRD Study. Kor J Mater Res, 13, 742 (2003). https://doi.org/10.3740/MRSK.2003.13.11.742
  28. Mathur RB. Bahl OP. Mittal J. Advances in the development of high-performance carbon fibres from PAN precursor. Comp Sci Technol, 51(2), 223 (1993). https://doi.org/10.1016/0266-3538(94)90192-9
  29. Kobayashi T. Sumiya K. Fukuba Y. Fujie M. Takahagi T. Tashiro K. Structural heterogeneity and stress distribution in carbon fiber monofilament as revealed by synchrotron micro-beam X-ray scattering and micro-Raman spectral measurements. Carbon, 49(5), 1646 (2011). https://doi.org/10.1016/j.carbon.2010.12.048
  30. Hao L. Peng P. Yang F. Zhang B. Zhang J. Lu X. Jiao W. Liu W. Wang R. He X. Study of structure-mechanical heterogeneity of polyacrylonitrile-based carbon fiber monofilament by plasma etching-assisted radius profiling. Carbon, 114, 317 (2017). https://doi.org/10.1016/j.carbon.2016.12.037