DOI QR코드

DOI QR Code

The Effect of La2O3 Loading on the Performance of Ni-La2O3-Ce0.8Zr0.2O2 Catalysts for Steam Reforming of Methane

수증기 개질 반응에서 Ni-La2O3-Ce0.8Zr0.2O2 촉매의 La2O3 함량이 촉매의 성능에 미치는 영향

  • YOO, SEONG-YEUN (Department of Environmental Engineering, Yonsei University) ;
  • KIM, HAK-MIN (Department of Environmental Engineering, Yonsei University) ;
  • KIM, BEOM-JUN (Department of Environmental Engineering, Yonsei University) ;
  • JANG, WON-JUN (Department of Environmental Engineering, Yonsei University) ;
  • ROH, HYUN-SEOG (Department of Environmental Engineering, Yonsei University)
  • Received : 2018.08.06
  • Accepted : 2018.10.30
  • Published : 2018.10.30

Abstract

$Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts with various $La_2O_3$ loading were investigated for hydrogen production from steam reforming of methane (SRM). The $La_2O_3$ loading influenced the physicochemical properties of $Ni-La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalysts such as BET surface area, Ni dispersion, Ni size and reducibility. Among the prepared catalysts, $Ni-70La_2O_3-Ce_{0.8}Zr_{0.2}O_2$ catalyst showed the highest activity and stability at a very high gas hourly space velocity (GHSV) of $932,556h^{-1}$. This is mainly due to high Ni dispersion, small Ni size and high reducibility.

Keywords

References

  1. X. Zhao and G. Lu, "Modulating and controlling active species dispersion over Ni-Co bimetallic catalysts for enhancement of hydrogen production of ethanol steam reforming", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 3349-3362. https://doi.org/10.1016/j.ijhydene.2015.09.063
  2. R. M. Navarro, M. C. Alvarez-Galvan, F. Rosa, and J. L. G. Fierro, "Hydrogen production by oxidative reforming of hexadecane over Ni and Pt catalysts supported on Ce/La-doped $Al_2O_3$", Appl. Catal. A: Gen., Vol. 297, 2006, pp. 60-72. https://doi.org/10.1016/j.apcata.2005.08.036
  3. P. Ferreira-Aparicio, M. J. Benito, and J. L. Sanz, "New trends in reforming technologies: from hydrogen industrial plants to multifuel microreformers", Catal. Rev., Vol. 47, 2005, pp. 491-588. https://doi.org/10.1080/01614940500364958
  4. D. W. Jeong, J. O. Shim, W. J. Jang, and H. S. Roh, "A Study on Pt-Na/$CeO_2$ Catalysts for Single Stage Water Gas Shift Reaction", Trans. of the Korean Hydrogen and New Energy Society, Vol. 23, No. 2, 2012, pp. 111-116. https://doi.org/10.7316/KHNES.2012.23.2.111
  5. D. J. Seo, W. L. Yoon, K. S. Kang, and J. W. Kim, "Patent Trend for Hydrogen Production Technology by Steam Reforming of Natural Gas", Trans. of the Korean Hydrogen and New Energy Society, Vol. 18, No. 4, 2007, pp. 464-480.
  6. N. Chanburanasiri, A. M. Ribeiro, A. E. Rodrigues, A. Arpornwichanop, N. Laosiripojana, P. Praserthdam, and S. Assabumrungrat, "Hydrogen production via sorption enhanced steam methane reforming process using Ni/CaO multifunctional catalyst", Ind. Eng. Chem. Res., Vol. 50, 2011, pp. 13662-13671. https://doi.org/10.1021/ie201226j
  7. A. E. Awadallah, D. S. El-Desouki, N. A. K. Aboul-Gheit, A. H. Ibrahim, and A. K. Aboul-Gheit, "Effect of crystalline structure and pore geometry of silica based supported materials on the catalytic behavior of metallic nickel particles during methane decomposition to $CO_x$-free hydrogen and carbon nanomaterials", Int. J. Hydrogen Energy, Vol. 41, 2016, pp. 16890-16902. https://doi.org/10.1016/j.ijhydene.2016.07.081
  8. H. Pennemann, R. Bellinghausen, T. Westermann, and L. Mleczko, "Reforming of methane in a multistage microstructured reactor", Chem. Eng. Technol., Vol. 38, 2015, pp. 1883-1893. https://doi.org/10.1002/ceat.201500193
  9. W. J. Jang, D. W. Jeong, J. O. Shim, H. M. Kim, H. S. Roh, I. H. Son, and S. J. Lee, "Combined steam and carbon dioxide reforming of methane and side reactions: thermodynamic equilibrium analysis and experimental application", Appl. Energy, Vol. 173, 2016, pp. 80-91. https://doi.org/10.1016/j.apenergy.2016.04.006
  10. H. S. Roh, I. H. Eum, and D. W. Jeong, "Low temperature steam reforming of methane over $Ni-Ce_{(1-x)}Zr_{(x)}O_2$ catalysts under severe conditions", Renewable Energy, Vol. 42, 2012, pp. 212-216. https://doi.org/10.1016/j.renene.2011.08.013
  11. H. Tian, X. Li, L. Zeng, and J. Gong, "Recent advances on the design of group VIII base-metal catalysts with encapsulated structures", ACS Catal., Vol. 5, 2015, pp. 4959-4977. https://doi.org/10.1021/acscatal.5b01221
  12. C. Zhang, S. Li, G. Wu, Z. Huang, Z. Han, T. Wang, and J. Gong, "Steam reforming of ethanol over skeletal Ni-based catalysts: a temperature programmed desorption and kinetic study", AIChE Journal, Vol. 60, 2013, pp. 635-644.
  13. X. Yu, F. Zhang, N. Wang, S. Hao, and W. Chu, "Plasmatreated bimetallic Ni-Pt catalysts derived from hydrotalcites for the carbon dioxide reforming of methane", Catal. Lett., Vol. 144, 2014, pp. 293-300. https://doi.org/10.1007/s10562-013-1130-3
  14. S. D. Angeli, F. G. Pilitsis, and A. A. Lemonidou, "Methane steam reforming at low temperature: effect of light alkanes' presence on coke formation", Catal. Today, Vol. 242, 2015, pp. 119-128. https://doi.org/10.1016/j.cattod.2014.05.043
  15. M. Dan, M. Mihet, Z. Tasnadi-Asztalos, A. Imre-Lucaci, G. Katona, and M. D. Lazar, "Hydrogen production by ethanol steam reforming on nickel catalysts: Effect of support modification by $CeO_2$ and $La_2O_3$", Fuel, Vol. 147, 2015, pp. 260-268. https://doi.org/10.1016/j.fuel.2015.01.050
  16. M. Dan, M. Mihet, A. R. Biris, P. Marginean, V. Almasan, and G. Borodi, "Supported nickel catalysts for low temperature methane steam reforming: comparison between metal additives and support modification", React. Kinet. Mech. Catal., Vol. 105, 2012, pp. 173-193. https://doi.org/10.1007/s11144-011-0406-0
  17. H. S. Roh and K. W. Jun, "Carbon dioxide reforming of methane over Ni catalysts supported on $Al_2O_3$ modified with $La_2O_3$, MgO, and CaO", Catal. Surv. Asia, Vol. 12, 2008, pp. 239-252. https://doi.org/10.1007/s10563-008-9058-0
  18. G. Wu, S. Li, C. Zhang, T. Wang, and J. Gong, "Glycerol steam reforming over perovskite-derived nickel-based catalysts", Appl. Catal. B: Environ., Vol. 144, 2014, pp. 277-285. https://doi.org/10.1016/j.apcatb.2013.07.028
  19. J. Gao, Z. Hou, J. Guo, Y. Zhu, and X. Zheng, "Catalytic conversion of methane and $CO_2$ to synthesis gas over a $La_2O_3$-modified $SiO_2$ supported Ni catalyst in fluidized-bed reactor", Catal. Today, Vol. 131, 2008, pp. 278-284. https://doi.org/10.1016/j.cattod.2007.10.019
  20. H. M. Kim, W. J. Jang, S. Y. Yoo, J. O. Shim, K. W. Jeon, H. S. Na, Y. L. Lee, B. H. Jeon, J. W. Bae, and H. S. Roh, "Low temperature steam reforming of methane using metal oxide promoted Ni-$Ce_{0.8}Zr_{0.2}O_2$ catalysts in a compact reformer", Int. J. Hydrogen Energy, Vol. 43, 2018, pp. 262-270. https://doi.org/10.1016/j.ijhydene.2017.11.058
  21. K. Wang, X. Li, S. Ji, X. Shi, and J. J. Tang, "Effect of $Ce_xZr_{1-x}O_2$ Promoter on Ni-Based SBA-15 Catalyst for Steam Reforming of Methane", Energy and Fuels, Vol. 23, 2009, pp. 25-31. https://doi.org/10.1021/ef800553b
  22. M. T. Bore, H. N. Pham, E. E. Switzer, T. L. Ward, A. Fukuoka, and A. K. Datye, "The Role of Pore Size and Structure on the Thermal Stability of Gold Nanoparticles within Mesoporous Silica", J. Phys. Chem. B, Vol. 109, 2005, pp. 2873-2880. https://doi.org/10.1021/jp045917p
  23. W. J. Jang, D. W. Jeong, J. O. Shim, H. S. Roh, I. H. Son, and S. J. Lee, "$H_2$ and CO production over a stable Ni-MgO-$Ce_{0.8}Zr_{0.2}O_2$ catalyst from $CO_2$ reforming of $CH_4$", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 4508-4512. https://doi.org/10.1016/j.ijhydene.2013.01.196
  24. D. W. Jeong, W. J. Jang, J. O. Shim, H. S. Roh, I. H. Son, and S. J. Lee, "The effect of preparation method on the catalytic performance over superior MgO-promoted Ni-$Ce_{0.8}Zr_{0.2}O_2$ catalyst for $CO_2$ reforming of $CH_4$", Int. J. Hydrogen Energy, Vol. 38, 2013, pp. 13649-13654. https://doi.org/10.1016/j.ijhydene.2013.08.026
  25. L. Pino, A. Vita, F. Cipitii, M. Lagana, and V. Recupero, "Hydrogen production by methane tri-reforming process over Ni-ceria catalysts: effect of La-doping", Appl. Catal. B: Environ., Vol. 104, 2011, pp. 64-73. https://doi.org/10.1016/j.apcatb.2011.02.027
  26. C. Batiot-Dupeyrat, G. Valderrama, A. Meneses, F. Martinez, J. Barrault, and J. M. Tatibouet, "Pulse study of $CO_2$ reforming of methane over $LaNiO_3$", Appl. Catal. A: Gen., Vol. 248, 2003, pp. 143-151. https://doi.org/10.1016/S0926-860X(03)00155-8
  27. J. E. Min, Y. J. Lee, H. G. Park, C. Zhang, and K. W. Jun, "Carbon dioxide reforming of methane on Ni-MgO-$Al_2O_3$ catalysts prepared by sol-gel method: Effects of Mg/Al ratios", J. Indus. Eng. Chem., Vol. 26, 2015, pp. 375-383. https://doi.org/10.1016/j.jiec.2014.12.012