DOI QR코드

DOI QR Code

스퍼터링을 통하여 다공성 양극산화 알루미늄 기판에 증착되는 니켈 박막의 기공 크기 조절

Control of the Pore Size of Sputtered Nickel Thin Films Supported on an Anodic Aluminum Oxide Substrate

  • 지상훈 (한국건설기술연구원 국토보전연구본부) ;
  • 장춘만 (한국건설기술연구원 국토보전연구본부) ;
  • 정우철 (한국과학기술원 신소재공학과)
  • JI, SANGHOON (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • JANG, CHOON-MAN (Department of Land, Water and Environment Research, Korea Institute of Civil Engineering and Building Technology (KICT)) ;
  • JUNG, WOOCHUL (Department of Materials Science and Engineering, Korea Advanced Institute of Science and Technology (KAIST))
  • 투고 : 2018.08.13
  • 심사 : 2018.10.30
  • 발행 : 2018.10.30

초록

The pore size of nickel (Ni) bottom electrode layer (BEL) for low-temperature solid oxide fuel cells embedded with ultrathin-film electrolyte was controlled by changing the substrate surface morphology and deposition process parameters. For ~150-nm-thick Ni BEL, the upper side of an anodic aluminum oxide (AAO) substrate with ~65-nm-sized pores provided ~1.7 times smaller pore size than the lower side of the AAO substrate. For ~100-nm-thick Ni BEL, the AAO substrate with ~45-nm-sized pores provided ~2.6 times smaller pore size than the AAO substrate with ~95-nm-sized pores, and the deposition pressure of ~4 mTorr provided ~1.3 times smaller pore size than that of ~48 mTorr. On the AAO substrate with ~65-nm-sized pores, the Ni BEL deposited for 400 seconds had ~2 times smaller pore size than the Ni BEL deposited for 100 seconds.

키워드

참고문헌

  1. Y. Choi and J. Ahn, "Study on reversible electrolysis characteristic of a planar type SOFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 6, 2017, pp. 657-662. https://doi.org/10.7316/KHNES.2017.28.6.657
  2. B. H. Choi, S. K. Hong, and M. J. Ji, "Performance of SOFC according to thickness of shell with Ni-YSZ core-shell", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 6, 2017, pp. 663-668. https://doi.org/10.7316/KHNES.2017.28.6.663
  3. G. H. Choi, S. S. Hwang, D. G. Kim, and C. Choi, "A numerical study on the expectation effect of thermal balance according to SOFC hot BOP insulation application method", Trans. of the Korean Hydrogen and New Energy Society, Vol. 28, No. 5, 2017, pp. 512-520. https://doi.org/10.7316/KHNES.2017.28.5.512
  4. Y. Lee, C. Yang, C. Yang, S. Park, and S. Park, "Optimization of operating conditions for a 10 kW SOFC system", Trans. of the Korean Hydrogen and New Energy Society, Vol. 27, No. 1, 2016, pp. 49-62. https://doi.org/10.7316/KHNES.2016.27.1.049
  5. C. H. Oh, K. H. Song, J. Han, and S. P. Yoon, "A study of ceria on low-temperature sintering using sintering aids for solid oxide fuel cells", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 3, 2014, pp. 280-288. https://doi.org/10.7316/KHNES.2014.25.3.280
  6. T. Ghang, Y. Kim, S. Lee, and K. Ahn, "An experimental study on the performances of a coupled reactor with catalytic combustion and steam reforming for SOFC and MCFC", Trans. of the Korean Hydrogen and New Energy Society, Vol. 25, No. 5, 2014, pp. 364-377. https://doi.org/10.7316/KHNES.2014.25.4.364
  7. W. Kim, S. Lee, R. Song, S. Park, T. Lim, and J. Lee, "Fabrication and performance evaluation of tubular solid oxide fuel cells stack", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 6, 2013, pp. 467-471. https://doi.org/10.7316/KHNES.2013.24.6.467
  8. W. Kim, S. Lee, R. Song, S. Park, T. Lim, and J. Lee, "Development of tubular solid oxide fuel cells with advanced anode current collection", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 6, 2013, pp. 480-486. https://doi.org/10.7316/KHNES.2013.24.6.480
  9. S. Sohn and I. H. Nam, "A simulation study of the effect of microstructural design on the performance of solid oxide fuel cells with direct internal reforming", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 5, 2013, pp. 401-412. https://doi.org/10.7316/KHNES.2013.24.5.401
  10. W. Wahyudi, B. Ahmed, S. B. Lee, R. H. Song, J. W. Lee, T. H. Lim, and S. J. Park, "Quantitative microstructure analysis to predict electrical property of NiO-YSZ anode support for SOFCs", Trans. of the Korean Hydrogen and New Energy Society, Vol. 24, No. 3, 2013, pp. 237-241. https://doi.org/10.7316/KHNES.2013.24.3.237
  11. S. Lee, H. Woo, and K. Ahn, "Effect of flow uniformity device on the catalytic combustor for 5 kW high temperature fuel cell system", Trans. of the Korean Hydrogen and New Energy Society, Vol. 22, No. 6, 2011, pp. 878-883. https://doi.org/10.7316/KHNES.2011.22.6.878
  12. T. Yamaguchi, H. Sumi, K. Hamamoto, T. Suzuki, Y. Fujishiro, J. D. Carter, and S. A. Barnett, "Effect of nanostructured anode functional layer thickness on the solid-oxide fuel cell performance in the intermediate temperature", Int. J. Hydrog. Energy, Vol. 39, 2014, pp. 19731-19736. https://doi.org/10.1016/j.ijhydene.2014.09.128
  13. C. W. Kwon, J. W. Son, J. H. Lee, H. M. Kim, H. W. Lee, and K. B. Kim, "High-performance micro-solid oxide fuel cells fabricated on nanoporous anodic aluminum oxide templates", Adv. Funct. Mater., Vol. 21, 2011, pp. 1154-1159. https://doi.org/10.1002/adfm.201002137
  14. S. Ji, G. Y. Cho, W. Yu, P. C. Su, M. H. Lee, and S. W. Cha, "Plasma-enhanced atomic layer deposition of nanoscale yttria-stabilized zirconia electrolyte for solid oxide fuel cells with porous substrate", ACS Appl. Mater. Interfaces, Vol. 7, 2015, pp. 2998-3002. https://doi.org/10.1021/am508710s
  15. S. Ji, H. G. Seo, S. Lee, J. Seo, Y. Lee, W. H. Tanveer, S. W. Cha, and W. Jung, "Integrated design of a Ni thin-film electrode on a porous alumina template for affordable and high-performance low-temperature solid oxide fuel cells", RSC Adv., Vol. 7, 2017, pp. 23600-23606. https://doi.org/10.1039/C7RA02719B