DOI QR코드

DOI QR Code

MicroRNA controls of cellular senescence

  • Suh, Nayoung (Department of Pharmaceutical Engineering, Soon Chun Hyang University)
  • Received : 2018.08.06
  • Published : 2018.10.31

Abstract

Cellular senescence is a state of permanent cell-cycle arrest triggered by different internal and external stimuli. This phenomenon is considered to be both beneficial and detrimental depending on the cell types and biological contexts. During normal embryonic development and after tissue injury, cellular senescence is critical for tissue remodeling. In addition, this process is useful for arresting growth of tumor cells, particularly during early onset of tumorigenesis. However, accumulation of senescent cells decreases tissue regenerative capabilities and induces inflammation, which is responsible for cancer and organismal aging. Therefore cellular senescence has to be tightly regulated, and dysregulation might lead to the aging and human diseases. Among many regulators of cellular senescence, in this review, I will focus on microRNAs, small non-coding RNAs playing critical roles in diverse biological events including cellular senescence.

Keywords

References

  1. Hayflick L and Moorhead PS (1961) The serial cultivation of human diploid cell strains. Exp Cell Res 25, 585-621 https://doi.org/10.1016/0014-4827(61)90192-6
  2. Hayflick L (1965) The Limited in Vitro Lifetime of Human Diploid Cell Strains. Exp Cell Res 37, 614-636 https://doi.org/10.1016/0014-4827(65)90211-9
  3. Campisi J and d'Adda di Fagagna F (2007) Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Biol 8, 729-740 https://doi.org/10.1038/nrm2233
  4. Collado M, Blasco MA and Serrano M (2007) Cellular senescence in cancer and aging. Cell 130, 223-233 https://doi.org/10.1016/j.cell.2007.07.003
  5. Kuilman T, Michaloglou C, Mooi WJ and Peeper DS (2010) The essence of senescence. Genes Dev 24, 2463-2479 https://doi.org/10.1101/gad.1971610
  6. Hernandez-Segura A, Nehme J and Demaria M (2018) Hallmarks of Cellular Senescence. Trends Cell Biol 28, 436-453 https://doi.org/10.1016/j.tcb.2018.02.001
  7. Sharpless NE and Sherr CJ (2015) Forging a signature of in vivo senescence. Nat Rev Cancer 15, 397-408 https://doi.org/10.1038/nrc3960
  8. Herbig U, Jobling WA, Chen BP, Chen DJ and Sedivy JM (2004) Telomere shortening triggers senescence of human cells through a pathway involving ATM, p53, and p21(CIP1), but not p16(INK4a). Mol Cell 14, 501-513 https://doi.org/10.1016/S1097-2765(04)00256-4
  9. Petrova NV, Velichko AK, Razin SV and Kantidze OL (2016) Small molecule compounds that induce cellular senescence. Aging Cell 15, 999-1017 https://doi.org/10.1111/acel.12518
  10. Munoz-Espin D and Serrano M (2014) Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol 15, 482-496 https://doi.org/10.1038/nrm3823
  11. Serrano M, Lin AW, McCurrach ME, Beach D and Lowe SW (1997) Oncogenic ras provokes premature cell senescence associated with accumulation of p53 and p16INK4a. Cell 88, 593-602 https://doi.org/10.1016/S0092-8674(00)81902-9
  12. Lu T and Finkel T (2008) Free radicals and senescence. Exp Cell Res 314, 1918-1922 https://doi.org/10.1016/j.yexcr.2008.01.011
  13. Wiley CD, Velarde MC, Lecot P et al (2016) Mitochondrial Dysfunction Induces Senescence with a Distinct Secretory Phenotype. Cell Metab 23, 303-314 https://doi.org/10.1016/j.cmet.2015.11.011
  14. Bent EH, Gilbert LA and Hemann MT (2016) A senescence secretory switch mediated by PI3K/AKT/mTOR activation controls chemoprotective endothelial secretory responses. Genes Dev 30, 1811-1821 https://doi.org/10.1101/gad.284851.116
  15. Lee BY, Han JA, Im JS et al (2006) Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging Cell 5, 187-195 https://doi.org/10.1111/j.1474-9726.2006.00199.x
  16. Lowe SW, Cepero E and Evan G (2004) Intrinsic tumour suppression. Nature 432, 307-315 https://doi.org/10.1038/nature03098
  17. Childs BG, Baker DJ, Kirkland JL, Campisi J and van Deursen JM (2014) Senescence and apoptosis: dueling or complementary cell fates? EMBO Rep 15, 1139-1153 https://doi.org/10.15252/embr.201439245
  18. Rajagopalan S and Long EO (2012) Cellular senescence induced by CD158d reprograms natural killer cells to promote vascular remodeling. Proc Natl Acad Sci U S A 109, 20596-20601 https://doi.org/10.1073/pnas.1208248109
  19. Munoz-Espin D, Canamero M, Maraver A et al (2013) Programmed cell senescence during mammalian embryonic development. Cell 155, 1104-1118 https://doi.org/10.1016/j.cell.2013.10.019
  20. Storer M, Mas A, Robert-Moreno A et al (2013) Senescence is a developmental mechanism that contributes to embryonic growth and patterning. Cell 155, 1119-1130 https://doi.org/10.1016/j.cell.2013.10.041
  21. Collado M and Serrano M (2010) Senescence in tumours: evidence from mice and humans. Nat Rev Cancer 10, 51-57 https://doi.org/10.1038/nrc2772
  22. Jun JI and Lau LF (2010) Cellular senescence controls fibrosis in wound healing. Aging (Albany NY) 2, 627-631
  23. Kong X, Feng D, Wang H et al (2012) Interleukin-22 induces hepatic stellate cell senescence and restricts liver fibrosis in mice. Hepatology 56, 1150-1159 https://doi.org/10.1002/hep.25744
  24. Lecot P, Alimirah F, Desprez PY, Campisi J and Wiley C (2016) Context-dependent effects of cellular senescence in cancer development. Br J Cancer 114, 1180-1184 https://doi.org/10.1038/bjc.2016.115
  25. Coppe JP, Patil CK, Rodier F et al (2008) Senescenceassociated secretory phenotypes reveal cell-nonautonomous functions of oncogenic RAS and the p53 tumor suppressor. PLoS Biol 6, 2853-2868
  26. Kuilman T, Michaloglou C, Vredeveld LC et al (2008) Oncogene-induced senescence relayed by an interleukin dependent inflammatory network. Cell 133, 1019-1031 https://doi.org/10.1016/j.cell.2008.03.039
  27. Davalos AR, Coppe JP, Campisi J and Desprez PY (2010) Senescent cells as a source of inflammatory factors for tumor progression. Cancer Metastasis Rev 29, 273-283 https://doi.org/10.1007/s10555-010-9220-9
  28. Turinetto V, Vitale E and Giachino C (2016) Senescence in Human Mesenchymal Stem Cells: Functional Changes and Implications in Stem Cell-Based Therapy. Int J Mol Sci 17, pii. E1164
  29. Banfi A, Muraglia A, Dozin B, Mastrogiacomo M, Cancedda R and Quarto R (2000) Proliferation kinetics and differentiation potential of ex vivo expanded human bone marrow stromal cells: Implications for their use in cell therapy. Exp Hematol 28, 707-715 https://doi.org/10.1016/S0301-472X(00)00160-0
  30. Cheng H, Qiu L, Ma J et al (2011) Replicative senescence of human bone marrow and umbilical cord derived mesenchymal stem cells and their differentiation to adipocytes and osteoblasts. Mol Biol Rep 38, 5161-5168 https://doi.org/10.1007/s11033-010-0665-2
  31. Kim M, Kim C, Choi YS, Kim M, Park C and Suh Y (2012) Age-related alterations in mesenchymal stem cells related to shift in differentiation from osteogenic to adipogenic potential: implication to age-associated bone diseases and defects. Mech Ageing Dev 133, 215-225 https://doi.org/10.1016/j.mad.2012.03.014
  32. Sepulveda JC, Tome M, Fernandez ME et al (2014) Cell senescence abrogates the therapeutic potential of human mesenchymal stem cells in the lethal endotoxemia model. Stem Cells 32, 1865-1877 https://doi.org/10.1002/stem.1654
  33. Geissler S, Textor M, Kuhnisch J et al (2012) Functional comparison of chronological and in vitro aging: differential role of the cytoskeleton and mitochondria in mesenchymal stromal cells. PLoS One 7, e52700 https://doi.org/10.1371/journal.pone.0052700
  34. Bartel DP (2009) MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233 https://doi.org/10.1016/j.cell.2009.01.002
  35. Suh N and Blelloch R (2011) Small RNAs in early mammalian development: from gametes to gastrulation. Development 138, 1653-1661 https://doi.org/10.1242/dev.056234
  36. Farh KK, Grimson A, Jan C et al (2005) The widespread impact of mammalian MicroRNAs on mRNA repression and evolution. Science 310, 1817-1821 https://doi.org/10.1126/science.1121158
  37. Subramanyam D and Blelloch R (2011) From microRNAs to targets: pathway discovery in cell fate transitions. Curr Opin Genet Dev 21, 498-503 https://doi.org/10.1016/j.gde.2011.04.011
  38. Maes OC, Sarojini H and Wang E (2009) Stepwise up-regulation of microRNA expression levels from replicating to reversible and irreversible growth arrest states in WI-38 human fibroblasts. J Cell Physiol 221, 109-119 https://doi.org/10.1002/jcp.21834
  39. Marasa BS, Srikantan S, Martindale JL et al (2010) MicroRNA profiling in human diploid fibroblasts uncovers miR-519 role in replicative senescence. Aging (Albany NY) 2, 333-343
  40. Wang Y, Scheiber MN, Neumann C, Calin GA and Zhou D (2011) MicroRNA regulation of ionizing radiationinduced premature senescence. Int J Radiat Oncol Biol Phys 81, 839-848 https://doi.org/10.1016/j.ijrobp.2010.09.048
  41. Dhahbi JM, Atamna H, Boffelli D, Magis W, Spindler SR and Martin DI (2011) Deep sequencing reveals novel microRNAs and regulation of microRNA expression during cell senescence. PLoS One 6, e20509 https://doi.org/10.1371/journal.pone.0020509
  42. Hu W, Chan CS, Wu R et al (2010) Negative regulation of tumor suppressor p53 by microRNA miR-504. Mol Cell 38, 689-699 https://doi.org/10.1016/j.molcel.2010.05.027
  43. Le MT, Teh C, Shyh-Chang N et al (2009) MicroRNA-125b is a novel negative regulator of p53. Genes Dev 23, 862-876 https://doi.org/10.1101/gad.1767609
  44. Kumar M, Lu Z, Takwi AA et al (2011) Negative regulation of the tumor suppressor p53 gene by microRNAs. Oncogene 30, 843-853 https://doi.org/10.1038/onc.2010.457
  45. Pichiorri F, Suh SS, Rocci A et al (2010) Downregulation of p53-inducible microRNAs 192, 194, and 215 impairs the p53/MDM2 autoregulatory loop in multiple myeloma development. Cancer Cell 18, 367-381 https://doi.org/10.1016/j.ccr.2010.09.005
  46. Xiao J, Lin H, Luo X, Luo X and Wang Z (2011) miR-605 joins p53 network to form a p53:miR-605:Mdm2 positive feedback loop in response to stress. EMBO J 30, 5021 https://doi.org/10.1038/emboj.2011.463
  47. Luo J, Nikolaev AY, Imai S et al (2001) Negative control of p53 by Sir2alpha promotes cell survival under stress. Cell 107, 137-148 https://doi.org/10.1016/S0092-8674(01)00524-4
  48. Zhao T, Li J and Chen AF (2010) MicroRNA-34a induces endothelial progenitor cell senescence and impedes its angiogenesis via suppressing silent information regulator 1. Am J Physiol Endocrinol Metab 299, E110-116 https://doi.org/10.1152/ajpendo.00192.2010
  49. Ito T, Yagi S and Yamakuchi M (2010) MicroRNA-34a regulation of endothelial senescence. Biochem Biophys Res Commun 398, 735-740 https://doi.org/10.1016/j.bbrc.2010.07.012
  50. Yamakuchi M, Ferlito M and Lowenstein CJ (2008) miR-34a repression of SIRT1 regulates apoptosis. Proc Natl Acad Sci U S A 105, 13421-13426 https://doi.org/10.1073/pnas.0801613105
  51. Cui H, Ge J, Xie N et al (2017) miR-34a Inhibits Lung Fibrosis by Inducing Lung Fibroblast Senescence. Am J Respir Cell Mol Biol 56, 168-178
  52. Bai XY, Ma Y, Ding R, Fu B, Shi S and Chen XM (2011) miR-335 and miR-34a Promote renal senescence by suppressing mitochondrial antioxidative enzymes. J Am Soc Nephrol 22, 1252-1261 https://doi.org/10.1681/ASN.2010040367
  53. Jazbutyte V, Fiedler J, Kneitz S et al (2013) MicroRNA-22 increases senescence and activates cardiac fibroblasts in the aging heart. Age (Dordr) 35, 747-762 https://doi.org/10.1007/s11357-012-9407-9
  54. Xu D, Takeshita F, Hino Y et al (2011) miR-22 represses cancer progression by inducing cellular senescence. J Cell Biol 193, 409-424 https://doi.org/10.1083/jcb.201010100
  55. Rivetti di Val Cervo P, Lena AM, Nicoloso M et al (2012) p63-microRNA feedback in keratinocyte senescence. Proc Natl Acad Sci U S A 109, 1133-1138 https://doi.org/10.1073/pnas.1112257109
  56. Menghini R, Casagrande V, Cardellini M et al (2009) MicroRNA 217 modulates endothelial cell senescence via silent information regulator 1. Circulation 120, 1524-1532 https://doi.org/10.1161/CIRCULATIONAHA.109.864629
  57. Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A et al (2011) miR-449 inhibits cell proliferation and is downregulated in gastric cancer. Mol Cancer 10, 29
  58. Okada M, Kim HW, Matsu-ura K, Wang YG, Xu M and Ashraf M (2016) Abrogation of Age-Induced MicroRNA-195 Rejuvenates the Senescent Mesenchymal Stem Cells by Reactivating Telomerase. Stem Cells 34, 148-159 https://doi.org/10.1002/stem.2211
  59. Lou Z, Minter-Dykhouse K, Franco S et al (2006) MDC1 maintains genomic stability by participating in the amplification of ATM-dependent DNA damage signals. Mol Cell 21, 187-200 https://doi.org/10.1016/j.molcel.2005.11.025
  60. Lee JH, Park SJ, Jeong SY et al (2015) MicroRNA-22 Suppresses DNA Repair and Promotes Genomic Instability through Targeting of MDC1. Cancer Res 75, 1298-1310 https://doi.org/10.1158/0008-5472.CAN-14-2783
  61. Borgdorff V, Lleonart ME, Bishop CL et al (2010) Multiple microRNAs rescue from Ras-induced senescence by inhibiting p21(Waf1/Cip1). Oncogene 29, 2262-2271 https://doi.org/10.1038/onc.2009.497
  62. Li G, Luna C, Qiu J, Epstein DL and Gonzalez P (2009) Alterations in microRNA expression in stress-induced cellular senescence. Mech Ageing Dev 130, 731-741 https://doi.org/10.1016/j.mad.2009.09.002
  63. Sokolova V, Fiorino A, Zoni E et al (2015) The Effects of miR-20a on p21: Two Mechanisms Blocking Growth Arrest in TGF-beta-Responsive Colon Carcinoma. J Cell Physiol 230, 3105-3114 https://doi.org/10.1002/jcp.25051
  64. Yi C, Wang Q, Wang L et al (2012) MiR-663, a microRNA targeting p21(WAF1/CIP1), promotes the proliferation and tumorigenesis of nasopharyngeal carcinoma. Oncogene 31, 4421-4433 https://doi.org/10.1038/onc.2011.629
  65. Abdelmohsen K, Srikantan S, Tominaga K et al (2012) Growth inhibition by miR-519 via multiple p21-inducing pathways. Mol Cell Biol 32, 2530-2548 https://doi.org/10.1128/MCB.00510-12
  66. Alcorta DA, Xiong Y, Phelps D, Hannon G, Beach D and Barrett JC (1996) Involvement of the cyclin-dependent kinase inhibitor p16 (INK4a) in replicative senescence of normal human fibroblasts. Proc Natl Acad Sci U S A 93, 13742-13747 https://doi.org/10.1073/pnas.93.24.13742
  67. Di Micco R, Fumagalli M, Cicalese A et al (2006) Oncogene-induced senescence is a DNA damage response triggered by DNA hyper-replication. Nature 444, 638-642 https://doi.org/10.1038/nature05327
  68. Nobori T, Miura K, Wu DJ, Lois A, Takabayashi K and Carson DA (1994) Deletions of the cyclin-dependent kinase-4 inhibitor gene in multiple human cancers. Nature 368, 753-756 https://doi.org/10.1038/368753a0
  69. Stone S, Jiang P, Dayananth P et al (1995) Complex structure and regulation of the P16 (MTS1) locus. Cancer Res 55, 2988-2994
  70. Lal A, Kim HH, Abdelmohsen K et al (2008) p16(INK4a) translation suppressed by miR-24. PLoS One 3, e1864 https://doi.org/10.1371/journal.pone.0001864
  71. Giglio S, Cirombella R, Amodeo R, Portaro L, Lavra L and Vecchione A (2013) MicroRNA miR-24 promotes cell proliferation by targeting the CDKs inhibitors p27Kip1 and p16INK4a. J Cell Physiol 228, 2015-2023 https://doi.org/10.1002/jcp.24368
  72. Philipot D, Guerit D, Platano D et al (2014) p16INK4a and its regulator miR-24 link senescence and chondrocyte terminal differentiation-associated matrix remodeling in osteoarthritis. Arthritis Res Ther 16, R58 https://doi.org/10.1186/ar4494
  73. O'Loghlen A, Brookes S, Martin N, Rapisarda V, Peters G and Gil J (2015) CBX7 and miR-9 are part of an autoregulatory loop controlling p16(INK) (4a). Aging Cell 14, 1113-1121 https://doi.org/10.1111/acel.12404
  74. Dimri M, Carroll JD, Cho JH and Dimri GP (2013) microRNA-141 regulates BMI1 expression and induces senescence in human diploid fibroblasts. Cell Cycle 12, 3537-3546 https://doi.org/10.4161/cc.26592
  75. Venkataraman S, Alimova I, Fan R, Harris P, Foreman N and Vibhakar R (2010) MicroRNA 128a increases intracellular ROS level by targeting Bmi-1 and inhibits medulloblastoma cancer cell growth by promoting senescence. PLoS One 5, e10748 https://doi.org/10.1371/journal.pone.0010748
  76. Liang J, Zhang Y, Jiang G et al (2013) MiR-138 induces renal carcinoma cell senescence by targeting EZH2 and is downregulated in human clear cell renal cell carcinoma. Oncol Res 21, 83-91
  77. Overhoff MG, Garbe JC, Koh J, Stampfer MR, Beach DH and Bishop CL (2014) Cellular senescence mediated by p16INK4A-coupled miRNA pathways. Nucleic Acids Res 42, 1606-1618 https://doi.org/10.1093/nar/gkt1096
  78. Tome M, Sepulveda JC, Delgado M et al (2014) miR-335 correlates with senescence/aging in human mesenchymal stem cells and inhibits their therapeutic actions through inhibition of AP-1 activity. Stem Cells 32, 2229-2244 https://doi.org/10.1002/stem.1699
  79. Yu Y, Gao R, Kaul Z et al (2016) Loss-of-function screening to identify miRNAs involved in senescence: tumor suppressor activity of miRNA-335 and its new target CARF. Sci Rep 6, 30185 https://doi.org/10.1038/srep30185
  80. Marasa BS, Srikantan S, Masuda K et al (2009) Increased MKK4 abundance with replicative senescence is linked to the joint reduction of multiple microRNAs. Sci Signal 2, ra69
  81. Martinez I, Cazalla D, Almstead LL, Steitz JA and DiMaio D (2011) miR-29 and miR-30 regulate B-Myb expression during cellular senescence. Proc Natl Acad Sci U S A 108, 522-527 https://doi.org/10.1073/pnas.1017346108
  82. Zhou Z, Yin Y, Chang Q, Sun G, Lin J and Dai Y (2017) Downregulation of B-myb promotes senescence via the ROS-mediated p53/p21 pathway, in vascular endothelial cells. Cell Prolif 50, e12319 https://doi.org/10.1111/cpr.12319
  83. Noonan EJ, Place RF, Basak S, Pookot D and Li LC (2010) miR-449a causes Rb-dependent cell cycle arrest and senescence in prostate cancer cells. Oncotarget 1, 349-358
  84. Humbert PO, Verona R, Trimarchi JM, Rogers C, Dandapani S and Lees JA (2000) E2f3 is critical for normal cellular proliferation. Genes Dev 14, 690-703
  85. Ren XS, Yin MH, Zhang X et al (2014) Tumor-suppressive microRNA-449a induces growth arrest and senescence by targeting E2F3 in human lung cancer cells. Cancer Lett 344, 195-203 https://doi.org/10.1016/j.canlet.2013.10.031
  86. Noguchi S, Mori T, Otsuka Y et al (2012) Anti-oncogenic microRNA-203 induces senescence by targeting E2F3 protein in human melanoma cells. J Biol Chem 287, 11769-11777 https://doi.org/10.1074/jbc.M111.325027
  87. Mudhasani R, Zhu Z, Hutvagner G et al (2008) Loss of miRNA biogenesis induces p19Arf-p53 signaling and senescence in primary cells. J Cell Biol 181, 1055-1063 https://doi.org/10.1083/jcb.200802105
  88. Gomez-Cabello D, Adrados I, Gamarra D et al (2013) DGCR8-mediated disruption of miRNA biogenesis induces cellular senescence in primary fibroblasts. Aging Cell 12, 923-931 https://doi.org/10.1111/acel.12117