DOI QR코드

DOI QR Code

쵸크랄스키법 실리콘 성장로에서 핫존 온도분포 경향에 대한 히터와 석영도가니의 상대적 위치의 영향

Influence of relative distance between heater and quartz crucible on temperature profile of hot-zone in Czochralski silicon crystal growth

  • 김광훈 (웅진에너지연구소) ;
  • 권세진 (웅진에너지연구소) ;
  • 김일환 (한양대학교 전자컴퓨터통신공학과) ;
  • 박준성 (한양대학교 전자컴퓨터통신공학과) ;
  • 심태헌 (한양대학교 전자컴퓨터통신공학과) ;
  • 박재근 (한양대학교 전자컴퓨터통신공학과)
  • Kim, Kwanghun (R&D Center, WoongjinEnergy) ;
  • Kwon, Sejin (R&D Center, WoongjinEnergy) ;
  • Kim, Ilhwan (Department of Electronic and Computer Engineering, Hanyang University) ;
  • Park, Junseong (Department of Electronic and Computer Engineering, Hanyang University) ;
  • Shim, Taehun (Department of Electronic and Computer Engineering, Hanyang University) ;
  • Park, Jeagun (Department of Electronic and Computer Engineering, Hanyang University)
  • 투고 : 2018.09.20
  • 심사 : 2018.10.12
  • 발행 : 2018.10.31

초록

고효율 태양전지용 단결정 실리콘 웨이퍼는 쵸크랄스키 성장법으로 석영도가니 속의 실리콘 액체에서 단결정 잉곳을 성장시켜 제조된다. 석영도가니 성분 중의 하나는 산소는 실리콘 잉곳으로 유입되고, 태양전지의 전력변환 효율 저하 문제를 발생시킨다. 이러한 산소 유입을 줄이는 다양한 방법 중 하나는 히터의 모양과 구조를 변경하는 방법이 있다. 그러나 히터 구조 변경 시 단결정 실리콘 잉곳 바디 성장에 필요한 온도 분포경향에 큰 변화를 일으킨다. 따라서 본 연구에서는 쵸크랄스키 실리콘 성장에서 다양한 히터의 구조와, 히터와 석영도가니의 상대적 위치가 단결정 실리콘 잉곳 Body 성장 시의 ATC 온도와 Power 분포경향에 미치는 영향에 대하여 연구하였다. 삼중점과 히터 중심과의 위치가 가장 먼 SSH-Low가 가장 높은 ATC 온도 분포경향을 보여주었다. 또한 길이가 짧은 Short Side Heater(SSH-Up, SSH-Low)보다는 실리콘 액체를 담고 있는 석영도가니 측면의 많은 영역을 커버할 수 있는 일반 Side Heater(SH)가 가장 Power 소모 측면에서 유리하였다. 특히 본 연구 결과를 통해 고효율 태양전지용 단결정 실리콘 잉곳 성장 시 필요한 효율적인 ATC 온도를 예측할 수 있음을 확인하였다.

To lessen oxygen concentrations in a wafer through modifying the length of graphite heaters, we investigated the influence of relative distance from heater to quartz crucible on temperature profile of hot-zone in Czochralski silicon-crystal growth by simulation. In particular, ATC temperature and power profiles as a function of different ingot body positions were investigated for five different heater designs; (a) typical side heater (SH), (b) short side heater-up (SSH-up), (c) short side heater-low (SSH-low), (d) bottom heater without side heater (Only-BH), and (e) side heater with bottom heater (SH + BH). It was confirmed that lower short side heater exhibited the highest ATC temperature, which was attributed to the longest distance from triple point to heater center. In addition, for the viewpoint of energy efficiency, it was observed that the typical side heater showed the lowest power because it heated more area of quartz crucible than that of others. This result provides the possibility to predict the feed-forward delta temperature profile as a function of various heater designs.

키워드

참고문헌

  1. S. Bhavsar, M. Najera, R. Solunke and G. Veser, "Chemical looping: To combustion and beyond", Catal. Today 228 (2014) 96. https://doi.org/10.1016/j.cattod.2013.12.025
  2. A. Zyadin, A. Puhakka, P. Ahponen and P. Pelkonen, "Secondary school teachers' knowledge, perceptions, and attitudes toward renewable energy in Jordan", Renew. Energy 62 (2014) 341. https://doi.org/10.1016/j.renene.2013.07.033
  3. S.R. Gislason and E.H. Oelkers, "Carbon Storage in Basalt", Science 344 (2014) 373. https://doi.org/10.1126/science.1250828
  4. E.W. Mcfarland, "Solar energy: setting the economic bar from the top-down", Energy Environ. Sci. 8 (2014) 846.
  5. Y. Horiuchi, T. Toyao, M. Takeuchi, M. Matsuoka and M. Anpo, "Recent advances in visible-light-responsive photocatalysts for hydrogen production and solar energy conversion-from semiconduction $TiO_2$ to MOF/PCP photocatalysts", Phy. Chem. Chem. Phy. 32 (2013) 13243.
  6. C.F. Guo, T. Sun, F. Cao, Q. Liu and Z. Ren, "Metallic nanostructures for light trapping in energy-harvesting devices", Light-Sci. Appl. 3 (2014) e161. https://doi.org/10.1038/lsa.2014.42
  7. S.S. Baik, I.S. Pang, J.M. Kim and K.H. Kim, "Improvement of minority carrier life time in N-type monocrystalline Si by the Czochralski method", Electron. Mater. Lett. 12 (2016) 426. https://doi.org/10.1007/s13391-016-4001-4
  8. B. Sopori, P. Basnyat, S. Devayajanam, T. Tan, A. Upadhyaya, K. Tate, A. Rohatgi and H. Xu, "Dissolution of oxygen precipitate nuclei in n-type CZ-Si Wafers to improve their material quality: experimental results", IEEE J. Photovolt. 7 (2017) 97. https://doi.org/10.1109/JPHOTOV.2016.2621345
  9. J. Haunschild, I.E. Reis, J. Geilker and S. Rein, "Detecting efficiency-limiting defects in Czochralski-grown silicon wafers in solar cell production using photoluminescence imaging", Phys. Status Solidi RRL 5 (2011) 199. https://doi.org/10.1002/pssr.201105183
  10. C.L. Zhou, W.J. Wang, H.L. Li, L. Zhao, H.W. Diao and X.D. Li, "Influence of ring oxidation-induced stack faults on efficiency in silicon solar", Chin. Phys. Lett. 25 (2008) 3005. https://doi.org/10.1088/0256-307X/25/8/073
  11. J. Schmidt, "Light-induced degradation in Crystalline silicon solar cells", Solid State Phenom. 95-96 (2004) 187.
  12. T. Luka, C. Hagendorf and M. Turek, "Multicrystalline PERC solar cells: Is light-induced degradation challenging the efficiency gain of rear passivation?", PV International 32 (2016) 37.
  13. J. Lindroos, Y. Boulfrad, M. Yli-Koski and H. Savin, "Preventing light-induced degradation in multicrystalline silicon", J. Appl. Phys. 115 (2014) 154902. https://doi.org/10.1063/1.4871404
  14. S. Togawa, Y. shiraishi, K. Terashima and S. Kimura, "Oxygen transport mechanism in Czochralski silicon melt", J. Electrochem. Soc. 142 (1995) 2844. https://doi.org/10.1149/1.2050103
  15. N. Machida, K. Hoshikawa and Y. Shimizu, "The effects of argon gas flow rate and furnace pressure on oxygen concentration in Czochralski silicon crystals grown in a transverse magnetic field", J. Cryst. Growth 210 (2000) 532. https://doi.org/10.1016/S0022-0248(99)00516-3
  16. M. Watanabe, W. Wang, M. Eguchi and T. Hibiya, "Control of oxygen-atom transport in silicon melt during crystal growth by electromagnetic force", Mater. T. JIM 41 (2000) 1013. https://doi.org/10.2320/matertrans1989.41.1013
  17. K.H. Kim, B.C. Sim, I.S. Choi and H.W. Lee, "Point defect behavior in Si crystal grown by electromagnetic Czochralski (EMCZ) method", J. Cryst. Growth 299 (2007) 206. https://doi.org/10.1016/j.jcrysgro.2006.10.267
  18. T.C. Chen, H.C. Wu and C.I. Wang, "The effect of interface shape on anisotropic thermal stress of bulk single crystal during Czochralski growth", J. Cryst. Growth 173 (1997) 367. https://doi.org/10.1016/S0022-0248(96)00894-9
  19. J. Friedrich, L. Stockmeier and G. Muller, "Constitutional supercooling in Czochralski growth of heavily doped silicon crystals", Acta Phys. Pol. A 124 (2013) 219. https://doi.org/10.12693/APhysPolA.124.219
  20. K.H. Kim and S.S. Baik, "Optimization of pulling speed for decreasing thermal stress in different quartz crucible size with Czochralski method", Photovoltaic Specialist Conference (PVSC), 2015 IEEE 42nd. IEEE, 2015.
  21. V.V. Kalaev, "Combined effect of DC magnetic fields and free surface stresses on the melt flow and crystallization front formation during 400 mm diameter Si Cz crystal growth", J. Cryst. Growth 303 (2007) 203. https://doi.org/10.1016/j.jcrysgro.2006.11.345
  22. V.V. Kalaev, A. Sattler and L. Kandinski, "Crystal twisting in Cz Si growth", J. Cryst. Growth 413 (2015) 12. https://doi.org/10.1016/j.jcrysgro.2014.12.005
  23. B. Zhou, W. Chen, Z. Li, R. Yue, G. Liu and X. Huang, "Reduction of oxygen concentration by heater design during Czochralski Si growth", J. Cryst. Growth 483 (2018) 164. https://doi.org/10.1016/j.jcrysgro.2017.11.008
  24. S.S. Baik, S.J. Kwon and K.H. Kim, "Understanding of the effect of charge size to temperature profile in the Czochralski method", J. Korean Cryt. Growth Cryst. Technol. 28 (2018) 141.