DOI QR코드

DOI QR Code

고에너지 볼밀을 이용한 SnSb 합금 분말 제조와 리튬 전기화학적 특성

Synthesis of SnSb alloys using high energy ball-miiling and its lithium electrochemical behavior

  • 김대경 (안동대학교 신소재공학부) ;
  • 이혁재 (안동대학교 신소재공학부)
  • Kim, Dae Kyung (School of Materials Science and Engineering, Andong National University) ;
  • Lee, Hyukjae (School of Materials Science and Engineering, Andong National University)
  • 투고 : 2018.08.18
  • 심사 : 2018.09.20
  • 발행 : 2018.10.31

초록

알곤 분위기 하에서 다양한 몰 비의 Sn과 Sb 혼합분말에 대한 고에너지 볼밀을 시행하여 잔류 Sn, Sb 입자를 지닌 SnSb 합금결정상을 가지는 분말을 제조한 후, 그 소재적 특성과 리튬전기화학적 거동을 조사하였다. 시작 분말 내 Sn, Sb의 양 조절을 통해 잔류 Sn, Sb 상을 지닌 SnSb의 합금분말의 합성과 볼밀링에 의한 입자크기의 감소가 X-선 회절 분석과 입도 분석에 의해 확인되었다. Li 금속을 상대전극으로 하여 합성된 SnSb 합금분말에 대한 Li 이온의 충방전 실험 결과, 시작 분말에서 Sn과 Sb의 몰 비를 4:6으로 하여 소량의 잔류 Sb를 지닌 SnSb 합금분말에서 가장 좋은 사이클 특성을 보여, $40mA\;g^{-1}$의 정전류 하에서 50회 충방전 후 $580mAh\;g^{-1}$의 용량을 보였으며, SnSb 합금상만을 가진 분말이 다음으로 좋은 충방전 특성을 보였다. 그러나 Sn : Sb = 3 : 7 합금분말에서는 Sn과 Li-ion의 반응이 억제되어 낮은 용량을 보였다. 잔류 Sn 상이 포함된 SnSb 합금 분말은 초기의 높은 용량을 지속하지 못하고 20회 이상의 충방전 시 급격한 용량 감소를 보였다.

SnSb alloy powders with excess Sn or Sb are fabricated by the high energy ball-milling of pure Sn and Sb powders with different Sn/Sb molar ratios, and then their material properties and lithium electrochemical performances are investigated. It is revealed by X-ray diffraction that SnSb alloys are successfully synthesized, and the powder size is decreased via ball-milling. Charge-discharge test using a coin-cell shows that the best result, in terms of the cyclability and the capacity after 50 cycles, comes from the electrode composed of Sn : Sb = 4 : 6, i.e. the capacity of $580mAh\;g^{-1}$ after 50 cycles. When the electrode is composed of Sn : Sb = 3 : 7, however, the capacity is noticeably decreased by the restrained Sn reaction with Li-ion. The pure SnSb alloy powders (Sn : Sb = 5 : 5) results in the second best performance. In the case of Sn-rich SnSb alloys, the initial capacity is relatively high, but the capacity is quickly fading after 20 cycles.

키워드

참고문헌

  1. R. Van Noorden, "A better battery", Nature 507 (2014) 26. https://doi.org/10.1038/507026a
  2. D. Larcher and J.M. Tarascon, "Towards greener and more sustainable batteries for electrical energy storage", Nat. Chem. 7 (2015) 19. https://doi.org/10.1038/nchem.2085
  3. C.M. Park, J.H. Kim, H. Kim and H.J. Sohn, "Li-alloy based anode materials for Li secondary batteries", Chem. Soc. Rev. 39 (2010) 3115. https://doi.org/10.1039/b919877f
  4. X.L. Wang, M. Feygenson, H.Y. Chen, C.H. Lin, W. Ku, J.M. Bai, M.C. Aronson, T.A. Tyson and W.Q. Han, "Nanospheres of a new intermetallic FeSn5 phase: Synthesis, magnetic properties and anode performance in Li-ion batteries", J. Am. Chem. Soc. 133 (2011) 11213. https://doi.org/10.1021/ja202243j
  5. Y. Gu, F.D. Wu and Y. Wang, "Confined volume change in Sn-Co-C ternary Tube-in-Tube composites for high-capacity and long-life lithium storage", Adv. Funct. Mater. 23 (2013) 893. https://doi.org/10.1002/adfm.201202136
  6. I. Kovalenko, B. Zdyrko, A. Magasinski, B. Hertzberg, Z. Milicev, R. Burtovyy, I. Luzinov and G. Yushin, "A major constituent of brown algae for use in high-capacity Li-ion batteries", Science 334 (2011) 75. https://doi.org/10.1126/science.1209150
  7. A.M. Chockla, K.C. Klavetter, C.B. Mullins and B.A. Korgel, "Tin-seeded silicon nanowires for high capacity Li-Ion batteries", Chem. Mater. 24 (2012) 3738. https://doi.org/10.1021/cm301968b
  8. S.C. Chao, Y.F. Song, C.C. Wang, H.S. Sheu, H.C. Wu and N.L. Wu, "Study on microstructural deformation of working Sn and SnSb anode particles for Li-ion batteries by in situ transmission X-ray microscopy", J. Phys. Chem. C 115 (2011) 22040. https://doi.org/10.1021/jp206829q
  9. H.L. Zhao, C.L. Yin, H. Guo, J.C. He, W.H. Qiu and Y. Li, "Studies of the electrochemical performance of SnSb alloy prepared by solid-state reduction", J. Power Sources 174 (2007) 916. https://doi.org/10.1016/j.jpowsour.2007.06.143
  10. S.F. Fan, T. Sun, X.H. Rui, Q.Y. Yan and H.H. Hng, "Cooperative enhancement of capacities in nanostructured SnSb/carbon nanotube network nanocomposite as anode for lithium ion batteries", J. Power Sources 201 (2012) 288. https://doi.org/10.1016/j.jpowsour.2011.10.137
  11. H. Li, G.Y. Zhu, X.J. Huang and L.Q. Chen, "Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloy prepared by co-precipitation in alcohol solution at low temperature", J. Mater. Chem. 10 (2000) 693. https://doi.org/10.1039/a906491e
  12. J.U. Seo and C.M. Park, "Nanostructured SnSb/MOx (M = Al or Mg)/C composites: hybrid mechanochemical synthesis and excellent Li storage performances", J. Mater. Chem. A 48 (2013) 15316.
  13. S. Das, T.N. Guru Row and A.J. Bhattacharyya, "Probing the critical role of Sn content in SnSb@C nanofiber anode on Li storage mechanism and battery performance", ACS Omega 2 (2017) 9250. https://doi.org/10.1021/acsomega.7b01479
  14. Y. Wang and J.Y. Lee, "One-step, confined growth of bimetallic Tin-antimony nanorods in carbon nanotubes grown in situ for reversible Li+ ion storage", Angew. Chem., Int. Ed. 45 (2006) 7039. https://doi.org/10.1002/anie.200602071
  15. M. He, M. Walter, K.V. Kravchyk, R. Erni, R. Widmer and M.V. Kovalenko, "Monodisperse SnSb nanocrystals for Li-ion and Na-ion battery anodes: synergy and dissonance between Sn and Sb", Nanoscale 7 (2015) 455. https://doi.org/10.1039/C4NR05604C
  16. M. Walter, S. Doswald and M.V. Kovalenko, "Inexpensive colloidal SnSb nanoalloys as efficient anode materials for lithium- and sodium-ion batteries", J. Mater. Chem. 4 (2016) 7053. https://doi.org/10.1039/C5TA10568D
  17. Y.F. Zhukovskii, P. Balaya, E.A. Kotomin and J. Maier, "Evidence for interfacial-storage anomaly in nanocomposites for lithium batteries from first-principles simulations", Phys. Rev. Lett. 96 (2006) 058302. https://doi.org/10.1103/PhysRevLett.96.058302
  18. Y.-Y. Hu, Z. Liu, K.-W. Nam, O.J. Borkiewicz, J. Cheng, X. Hua, M.T. Dunstan, X. Yu, K.M. Wiaderek, L.-S. Du, K.W. Chapman, P.J. Chupas, X.-Q. Yang and C.P. Grey, "Origin of additional capacities in metal oxide lithium-ion battery electrodes", Nat. Mater. 12 (2013) 1130. https://doi.org/10.1038/nmat3784
  19. F.J. Fernandez-Madrigal, P. Lavela, C.P. Vicente, J.L. Tirado, J.C. Jumas and J. Olivier-Fourcade, "X-ray diffraction, $^7Li$ MAS NMR spectroscopy, and $^{119}Sn$ Mossbauer spectroscopy study of SnSb-based electrode materials", Chem. Mater. 14 (2002) 2962. https://doi.org/10.1021/cm0112800
  20. L. Aldon, A. Garcia, J. Olivier-Fourcade, J.-C. Jumas, F.J. Fernandez-Madrigal, P. Lavela, C.P. Vicente and J.L. Tirado, "Lithium insertion mechanism in Sb-based electrode materials from $^{121}Sb$ Mossbauer spectrometry", J. Power Sources 119-121 (2003) 585. https://doi.org/10.1016/S0378-7753(03)00299-4