DOI QR코드

DOI QR Code

Study on the immersion test of geopolymers made by recycling of coal ash

석탄회를 재활용한 지오폴리머 침지실험에 관한 연구

  • Bang, John J. (Department of Environmental, Earth & Geospatial Sciences, North Carolina Central University) ;
  • Kang, Seunggu (Department of Advanced Material Engineering, Kyonggi University)
  • ;
  • 강승구 (경기대학교 신소재공학과)
  • Received : 2018.08.23
  • Accepted : 2018.09.12
  • Published : 2018.10.31

Abstract

A geopolymer was produced from coal ash generated from an integrated gasification combined cycle (IGCC) plant and its water resistance was evaluated. For this purpose, the geopolymer specimens were immersed in water for 30 days to measure changes in microstructure and alkalinity of the immersion liquid. Particularly, the experiment was carried out with foaming status of the geopolymers and parameters of room temperature aging condition, and immersion time. The foamed geopolymer containing 0.1 wt% Si-sludge had pores with a diameter of 1 to 3 mm and exhibited excellent foamability. Also, the calcium-silicate-hydrate crystal phase appeared in the foamed geopolymer. In the geopolymer immersion experiment, the pH of the immersion liquid increased with time, because the un-reacted alkali activator remained was dissolved in the immersion liquid. From the pH change of the immersion liquid, it was found that geopolymer reaction in the foamed specimen was completed faster than the non-foamed specimen. Through this study, it was possible to successfully produce foamed and non-foamed geopolymers recycled from IGCC coal ash. Also the necessary data for the safe application of IGCC coal ash-based geopolymers to areas where water resistance is needed were established; for example, the process conditions for room temperature aging time, effect of foaming status, immersion time and so on.

IGCC(integrated gasification combined cycle) 발전소에서 발생된 석탄회로부터 발포 및 비발포 지오폴리머를 제조하고, 그 내수성을 평가하였다. 시편을 30일간 물에 침지하여 미세구조 변화 및 침지액의 알칼리도 변화를 측정함에 있어 지오폴리머 발포여부, 상온재령 조건, 그리고 침지시간을 변수로 실험하였다. Si-sludge를 0.1 wt% 첨가한 지오폴리머에는 직경이 1~3 mm인 기공들이 발생하여 우수한 발포성을 보였고, calcium-silicate-hydrate 결정상이 생성되었다. 침지실험에서 침지액의 pH가 시간에 따라 증가하는 것은 경화제로 사용된 알칼리 활성화제 중에서 미반응된 것이 물에 녹아나왔기 때문이다. 침지액의 pH 변화로부터 발포된 시편이 제조과정에서 비발포 시편에 비해 지오폴리머 반응이 더 빨리 완결됨을 알 수 있었다. 본 연구를 통하여 IGCC 석탄회를 재활용한 발포 및 비발포 지오폴리머를 성공적으로 제조할 수 있었으며, 향후 내수성이 필요한 분야에 IGCC 석탄회 기반 지오폴리머를 적용하기 위해 필수적인 상온재령 시간, 발포/비발포 유무, 침지 시간 등에 대한 공정 데이터들을 확보하였다.

Keywords

References

  1. D. Satterthwaite, "Cities' contribution to global warming: notes on the allocation of greenhouse gas emissions", Environment & Urbanization 20 (2008) 539. https://doi.org/10.1177/0956247808096127
  2. A. Bogomolov, B. Lepri, R. Larcher and F. Antonelli, "Energy consumption prediction using people dynamics derived from cellular network data", EPJ Data Sci. 5 (2016) 1. https://doi.org/10.1140/epjds/s13688-015-0062-0
  3. O. Ohunakin, O. Leramo, O. Abidakun, M. Odunfa and O. Bafuwa, "Energy and cost analysis of cement production using the wet and dry processes in nigeria", Energy and Power Engineering 5 (2013) 537. https://doi.org/10.4236/epe.2013.59059
  4. E. An, S. Cho, S. Lee, H. Miyauchi and G. Kim, "Compressive strength properties of geopolymer using power plant bottom ash and NaOH activator", Kor. J. Mater. Res. 22 (2012) 71. https://doi.org/10.3740/MRSK.2012.22.2.71
  5. J. Davidovits, "Geopolymers: Inorganic polymeric new materials", J. Therm. Anal. 37 (1991) 1633. https://doi.org/10.1007/BF01912193
  6. J. Davidovits, "Global warming impacts on the cement and aggregate industries", World Resource Review 6 (1994) 263.
  7. T. Bakharev, "Durability of geopolymer materials in sodium and magnesium sulfate solutions", Cem. Concr. Res. 35 (2005) 1233. https://doi.org/10.1016/j.cemconres.2004.09.002
  8. J. Davidovits, L. Buzzi, P. Rocher, D. Gimeno, C. Marini and S. Tocco, "Geopolymeric cement based on low cost geopolymer materials. Results from the european research project GEOCISTEM", Geopolymer'99 Proceeding (1999) 83.
  9. A. Fernandez-Jimenez, I. Garcia-Lodeiro and A. Palomo, "Durability of alkali activated fly ash cementitious materials", J. Mater. Sci. 42 (2007) 3055. https://doi.org/10.1007/s10853-006-0584-8
  10. A. Palomo, M. Blanco-Valera, M. Granizo, F. Puertas, T. Vazquez and M. Grutzeck, "Chemical stability of cementitious materials based on metakaolin", Cem. Concr. Res. 29 (1999) 997. https://doi.org/10.1016/S0008-8846(99)00074-5
  11. T. Silverstrim, H. Rostami, J. Clark and J. Martin, "Microstructure and properties of chemically activated fly ash concrete", Proc. 19th Int. Conf. Cem. Micro. (1997) 355.
  12. T. Ueng, S. Lyu, H. Chu, H. Lee and T. Wang, "Adhesion at interface of geopolymer and cement mortar under compression: an experimental study", Constr. Build. Mater. 35 (2012) 204. https://doi.org/10.1016/j.conbuildmat.2012.03.008
  13. S. Yong, D. Feng, G. Lukey and J. Deventer, "Chemical characterisation of the steel-geopolymeric gel interface", Colloids Surf., A: Physicochem. Eng. Aspects 302 (2007) 411. https://doi.org/10.1016/j.colsurfa.2007.03.004
  14. J. Provis, A. Palomo and C. Shi, "Advances in understanding alkali-activated materials", Cem. Concr. Res. 78 (2015) 110. https://doi.org/10.1016/j.cemconres.2015.04.013
  15. J. Davidovits, "Geopolymer chemistry and applications", Ins. Geopolymers, France, 2008.
  16. F. Skvara, L. Kopecky, J. Nemecek and Z. Bittnar, "Microstructure of geopolymer materials based on fly ash", Ceram. Silik. 50 (2006) 208.
  17. K. Komnitsas and D. Zaharaki, "Geopolymerisation: a review and prospects for the minerals industry", Miner. Eng. 20 (2007) 1261. https://doi.org/10.1016/j.mineng.2007.07.011
  18. A. Nikolov, I. Rostovsky and H. Nugteren, "Geopolymer materials based on natural zeolite", Case Studies in Construction Materials 6 (2017) 198. https://doi.org/10.1016/j.cscm.2017.03.001