DOI QR코드

DOI QR Code

Ti6Al4V 합금에 두 종류의 생체활성화 유리 코팅

Coating of two kinds of bioactive glass on Ti6Al4V alloy

  • 강은태 (경상대학교 나노.신소재공학부) ;
  • 이남영 (경상대학교 나노.신소재공학부) ;
  • 최현빈 (한국알루미나(주) 연구개발팀)
  • Kang, Eun-Tae (School of Nano & Advanced Materials Engineering, Gyeongsang National University) ;
  • Lee, Nam-Young (School of Nano & Advanced Materials Engineering, Gyeongsang National University) ;
  • Choi, Hyun-Bin (Research & Development Team, Korea Alumina Co., Ltd.)
  • 투고 : 2018.08.13
  • 심사 : 2018.09.05
  • 발행 : 2018.10.31

초록

에나멜 기법을 활용하여 Ti6Al4V 합금에 두 종류의 생체활성화 유리를 코팅하였다. 재료간의 열팽창계수 차이에 의한 열응력을 줄이기 위해 재료간의 열팽창계수의 차가 $2{\times}10^{-6}/^{\circ}C$ 정도 되도록 생체활성화 유리 조성을 선정하였다. 열팽창계수의 차이에도 불구하고 Ti6Al4V 합금과 코팅 유리간에 확산결합에 의해 양호한 부착이 형성되었음을 FE-SEM과 EDS 분석으로 확인하였다. 의사체액에 담근 후 코팅 표면에 일반적인 생체활성화 유리와 같은 hydroxycarbonate apatite가 형성됨을 FT-IR로부터 확인하였다.

Two kinds of bioactive glass were coated on the Ti6Al4V alloy by the enameling technique. In order to reduce the thermal stress due to the difference in expansion coefficient with the alloy with the secondary coating forming hydroxyapatite, the difference in expansion coefficient between the alloy and the two glasses was adjusted at $2{\times}10^{-6}/^{\circ}C$ intervals. FE-SEM and EDS analysis showed that good adhesion was formed between the Ti6Al4V alloy and the primary coating by diffusion bonding. After immersion in SBF solution, it was confirmed from FT-IR that hydroxycarbonate apatite formed in the secondary coating was not different from bulk bioactive glass.

키워드

참고문헌

  1. B.D. Ratner, "A perspective on Titanium biocompatibility and Titanium for medical applications", in Titanium in medicine: material science, surface science, engineering, biological responses and medical applications, D. M. Brunette, P. Tengvall, M. Textor and P. Thomsen, Ed., (Springer, Berlin, Germany, 2001) p. 1.
  2. R. Branemark, L.O. Ohrnell, P. Nilsson and P. Thomson, "Biomechanical characterization of osseointegration during healing: an experimental in vivo study in the rat", Biomaterials 18 (1997) 969. https://doi.org/10.1016/S0142-9612(97)00018-5
  3. A.M. Baool, O. Omar, W. Xia and A. Palmquist, "Dental implant surfaces - physicochemical properties, biological performance, and Trends", in Implant dentistry - a rapidly evolving practice, I. Turkyilmaz Ed., (InTech, London, 2011) p. 19.
  4. W. Suchanek and M. Yoshimura, "Processing and properties of hydroxyapatite-based biomaterials for use as hard tissue replacement implants", J. Mater. Res. 13 (1998) 94. https://doi.org/10.1557/JMR.1998.0015
  5. S.W. Ha, R. Reber, K.L. Ecjert, M. Petitmermet, J. Mayer, E. Wintermanterl, C. Baerlacher and H. Gruner, "Chemical and morphological changes of vacuumplasma-sprayed hydroxyapatite coatings during immersion in simulated physiological solutions", J. Am. Ceram. Soc. 81[1] (1998) 81. https://doi.org/10.1111/j.1151-2916.1998.tb02298.x
  6. K.A. Gross, V. Gross and C.C. Berdin, "Thermal analysis of amorphous phases in hydroxyapatite coatings", J. Am. Ceram. Soc. 81[1] (1998) 106. https://doi.org/10.1111/j.1151-2916.1998.tb02301.x
  7. L.L. Hench, "Bioceramics," J. Am. Ceram. Soc. 81[7] (1998) 1705. https://doi.org/10.1111/j.1151-2916.1998.tb02540.x
  8. R. Boyer, G. Welsch and E.W. Collings, "Materials Properties Handbook: Titanium Alloys" (ASM International, Materials Park, OH, 1994) p. 493.
  9. D. Bellucci, V. Cannillo and A. Sola, "Coefficient of thermal expansion of bioactive glasses: available literature data and analytical equation estimates", Ceram. Int. 37 (2011) 2963. https://doi.org/10.1016/j.ceramint.2011.05.048
  10. R.G. Hill and D.S. Brauer, "Predicting the bioactivity of glasses using the network connectivity or split network models", J. Non-Cryst. Solids 357 (2011) 3884. https://doi.org/10.1016/j.jnoncrysol.2011.07.025
  11. D.R. Bloyer, J.M. Comez-Vega, E. saiz, J.M. Mcnaney, R.M. Cannon and A.P. Tomsia, "Fabrication and characterization of a bioactive glass coating on titanium implant alloys", Acta. Meter. 47[15] (1999) 4221. https://doi.org/10.1016/S1359-6454(99)00280-3
  12. J.M. Gomez-Vega, E. Saiz, A.P. Tomsia, G.W. Marshall and S.J. Marshall, "Bioactive glass coating with hydroxyapatite and $Bioglass^{(R)}$ particles on Ti-based implants. 1. Processing", Biomaterials 21 (2000) 105. https://doi.org/10.1016/S0142-9612(99)00131-3
  13. S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma and A.P. Tomsia, "Bioactive glass coatings for orthopedic metallic implants", J. Eur. Ceram. Soc. 23 (2003) 2921. https://doi.org/10.1016/S0955-2219(03)00303-0
  14. H. Ylanen, K.H. Karlsson, A. Itala and H.T. Aro, "Effect of immersion in SBF on porous bioactive bodies made by sintering bioactive glass microspheres", J. Non-Cryst. Solids 275 (2000) 107. https://doi.org/10.1016/S0022-3093(00)00245-3
  15. N. Lotfibakhshaiesh, D.S. Brauer and R.G. Hill, "Bioactive glass engineered coatings for Ti6Al4V alloys: influence of strontium substitution for calcium on sintering behavior", J. Non-Cryst. Solids 356 (2010) 2583. https://doi.org/10.1016/j.jnoncrysol.2010.05.017
  16. M. Brink, "The influence of alkali and alkaline earths on the working range for bioactive glasses", J. Biomed. Mater. Res. 36[1] (1997) 109. https://doi.org/10.1002/(SICI)1097-4636(199707)36:1<109::AID-JBM13>3.0.CO;2-D
  17. T. Kokubo and H. Takadama, "How useful is SBF in predicting in vivo bone bioactivity", Biomaterials 27 (2006) 2907. https://doi.org/10.1016/j.biomaterials.2006.01.017
  18. W.D. Kingery, "Factors Affecting Thermal Stress Resistance of Ceramic Materials", J. Am. Ceram. Soc. 38[1] (1955) 3. https://doi.org/10.1111/j.1151-2916.1955.tb14545.x
  19. A.K. Srivastava, R. Pyare and S.P. Singh, "In vitro bioactivity and physical - mechanical properties of $Fe_2O_3$ substituted 45S5 bioactive glasses and glass-ceramics", Inter. J. Sci. & Eng. Res. 3[2] (2012) 1.
  20. S. Lopez-Esteban, E. Saiz, S. Fujino, T. Oku, K. Suganuma and A.P. Tomsia, "Bioactive glass coatongs for orthopedic metallic implants", J. Eur. Ceram. Soc. 23 (2003) 2921. https://doi.org/10.1016/S0955-2219(03)00303-0
  21. H. Liu, H. Yazici, C. Ergun, T.J. Webster and H. Bermek, "An in vitro evaluation of the Ca/P ratio for the cytocompatibility of nano-to-micron particulate calcium phosphates for bone regeneration", Acta. Biomater. 4 (2008) 1472. https://doi.org/10.1016/j.actbio.2008.02.025
  22. S.A. MacDonald, C.R. Schardt and D. Masiello, "Dispersion analysis of FTIR reflection measurements in silicate glasses", J. Non-Cystal. Solids 275 (2000) 72. https://doi.org/10.1016/S0022-3093(00)00121-6
  23. R.V. Santos and R.N. Clayton, "The carbonate content in high-temperature apatite: An analytical method applied to apatite from the Jacupiranga alkaline complex", Am. Mineral. 80 (1995) 336. https://doi.org/10.2138/am-1995-3-415
  24. I. Rehman and W. Bonfield, "Characterization of hydroxyapatite and carbonated apatite by photo acoustic FTIR spectroscopy", J. Mat. Sci.: Mater. Med. 8 (1997) 1.
  25. R.M. Wilson, S.E.P. Dowker and J.C. Elliott, "Rietveld refinements and spectroscopic structural studies of a Nafree carbonate apatite made by hydrolysis of monetite", Biomaterials 27 (2006) 4682. https://doi.org/10.1016/j.biomaterials.2006.04.033
  26. C. Rey, B. Collins, T. Goehl, I. Dickson and M. Glimcher, "The carbonate environment in bone mineral: a resolution-enhanced Fourier transform infrared spectroscopy", Calcif. Tissue Int. 45 (1989) 157. https://doi.org/10.1007/BF02556059
  27. I. Lebecq, F. Desanglois, A. Leriche and C. Follet-Houttemane, "Compositional dependence on the in vitro bioactivity of invert or conventional bioglasses in the Si-Ca-Na-P system", J. Biomed. Mater. Res. A 83 (2007) 156.
  28. M.D. O'Donnell, S.J. Watts, R.G. Hill and R.V. Law, "The effect of phosphate content on the bioactivity of soda-lime-phosphosilicate glasses", J. Mater. Sci. Mater. Med. 20 (2009) 1611. https://doi.org/10.1007/s10856-009-3732-2
  29. J. Serra, P. Gonzalez, S. Liste, C. Serra, S. Chiussi, B. Leon, M. Perez-Amor, H.O. Ylanen and M. Hupa, "FTIR and XPS studies of bioactive silica based glasses", J. Non-Cryst. Solids 332 (2003) 20. https://doi.org/10.1016/j.jnoncrysol.2003.09.013