DOI QR코드

DOI QR Code

Optimization for high speed manufacturing of Ti-6Al-4V alloy by a selective laser melting technique

SLM 기술을 이용한 Ti-6Al-4V 합금의 고속 적층 공정 최적화 연구

  • Lee, Kang Pyo (Additive Manufacturing Process R&D Group, Korea Institute of Industrial Technology) ;
  • Kim, Kang Min (Additive Manufacturing Process R&D Group, Korea Institute of Industrial Technology) ;
  • Kang, Suk Hyun (Additive Manufacturing Process R&D Group, Korea Institute of Industrial Technology) ;
  • Han, Jun Hyun (Department of Material Science and Engineering, Chungnam National University) ;
  • Jung, Kyung Hwan (Additive Manufacturing Process R&D Group, Korea Institute of Industrial Technology)
  • 이강표 (한국생산기술연구원 적층성형가공그룹) ;
  • 김강민 (한국생산기술연구원 적층성형가공그룹) ;
  • 강석현 (한국생산기술연구원 적층성형가공그룹) ;
  • 한준현 (충남대학교 신소재공학과) ;
  • 정경환 (한국생산기술연구원 적층성형가공그룹)
  • Received : 2018.10.04
  • Accepted : 2018.10.11
  • Published : 2018.10.31

Abstract

Selective laser melting (SLM) technique is one of the additive manufacturing processes, in which functional, complex parts can be directly manufactured by selective melting layers of powder. SLM technique has received great attention due to offering a facile part-manufacturing route and utilizing a hard-to-manufacturing material (e.g. Ti6Al4V). The SLM process allows the accurate fabrication of near-net shaped parts and the significant reduction in the consumption of raw materials when compared to the traditional manufacturing processes such as casting and/or forging. In this study, we focus the high-speed additive manufacturing of Ti6Al4V parts in the aspect of manufacturing time, controlling various process parameters.

Selective laser melting(SLM)은 적층 제조 방법 중 하나로서, 분말을 선택적으로 용융하여 기능적이고, 복잡한 형상을 즉각적으로 제작 가능하다는 장점이 있다. Ti-6Al-4V 합금의 경우 높은 융점과 산화문제로 인하여 SLM 공정도입에 어려움을 겪고 있다. 본 연구에서는 SLM 장비를 사용하여 Ti-6Al-4V 파트를 성공적으로 적층하였으며 스캔속도, 레이저 파워의 변수를 조절하여 적층 가능 조건을 도출하였다. 또한 적층 된 Ti-6Al-4V 파트의 형상 정밀도, 면밀도 및 기계적특성 평가를 통하여 일반적으로 사용되는 공정조건(스캔 속도 200~700 mm/s)으로 제작된 제작품 물성치와 비교를 통해 Ti-6Al-4V 합금의 고속 적층 영역에서의 최적 공정을 확립하였다.

Keywords

References

  1. R.R. Boyer, "An overview on the sue of titanium in the aerospace industry", Mater. Sci. Eng. A213 (1996) 103.
  2. W.J. Jeong, Y.S. Kwon and D.S. Kim, "Development of a metal 3D printer and process optimization for fabricating titanium alloy parts", Korean Soc. Mech. Eng. 11 (2015) 1909.
  3. Z. Yuwei and L. Diana, "Novel forming of Ti-6Al-4V by laser engineered net shaping", J. Mater. Sci. Forum 765 (2013) 393.
  4. E. Herderick, "Additive manufacturing of metal: A review", Material Science and Technology (MS&T) 16-20 (2011) 1413.
  5. H. Gong, H. Gu, K. Zeng, J.J.S. Dilip, D. Pal and B. Stucker, "Melt pool characterization for selective laser melting of Ti-6Al-4V pre-alloyed powder", Conference: Conference: 25th Annual International Solid Freeform Fabrication Symposium (2014).
  6. Y.F. Shen, D.D. Gu and Y.F. Pan, "Balling process in selective laser sintering 316 stainless steel powder", J. Key. Eng. Mater. 315-316 (2006) 357. https://doi.org/10.4028/www.scientific.net/KEM.315-316.357
  7. T. Vilaro, C. Colin and J.D. Bartout, "As-fabricated and heat-treated microstructures of the Ti-6Al-4V alloy processed by selective laser melting", J. Metallurg. Mater. Trans. A 42A (2011) 3190.
  8. L. Facchini, A. Molinari, S. Hoges and K. Wissenbach, "Ductility of a Ti-6Al-4V alloy produced by selective laser melting of prealloyed powders", J. Rap. Proto. 16 (2010) 450. https://doi.org/10.1108/13552541011083371
  9. A. Mertens, S. Reginster, H. Paydas, Q. Contrepois, T. Dormal, O. Lemaire and J. Lecomte-Beckers, "Mechanical properties of alloy Ti-6Al-4V and of stainless steel 316L processed by selective laser melting: influence of out-of-equilibrium microstructures", J. Pow. Met. 57 (2014) 184. https://doi.org/10.1179/1743290114Y.0000000092