DOI QR코드

DOI QR Code

Zn/Co ZIF derived synthesis of Co-doped ZnO nanoparticles and application as high-performance trimethylamine sensors

Co가 도핑된 ZnO 나노입자의 Zn/Co ZIF 유도 합성 및 고성능 트리메틸아민 센서로의 응용

  • Yoon, Ji-Wook (Department of Materials Science and Engineering, Korea University)
  • 윤지욱 (고려대학교 신소재공학과)
  • Received : 2018.10.17
  • Accepted : 2018.10.22
  • Published : 2018.10.31

Abstract

$Zn_{1-x}Co_x$ Zeolitic Imidazolate Framework (ZIF) (x = 0~0.05) were prepared by the co-precipitation of $Zn^{2+}$ and $Co^{2+}$ using 2-methylimidazole, which were converted into pure and Co-doped ZnO nanoparticles by heat treatment at $600^{\circ}C$ for 2 h. Homogeneous Zn/Co ZIFs were achieved at x < 0.05 owing to the strong coordination of the imidazole linker to $Zn^{2+}$ and $Co^{2+}$, facilitating atomic-scale doping of Co into ZnO via annealing. By contrast, heterogeneous Zn/Co ZIFs were formed at $x{\geq}0.05$, resulting in the formation of $Co_3O_4$ second phase. To investigate the potential as high-performance gas sensors, the gas sensing characteristics of pure and Co-doped ZnO nanoparticles were evaluated. The sensor using 3 at% Co-doped ZnO exhibited an unprecedentedly high response and selectivity to trimethylamine, whereas pure ZnO nanoparticles did not. The facile, bimetallic ZIF derived synthesis of doped-metal oxide nanoparticles can be used to design high-performance gas sensors.

$Zn_{1-x}Co_x$ Zeolitic Imidazolate Framework-8(ZIF)(x = 0~0.05)를 2-methylimidazole을 사용하여 $Zn^{2+}$$Co^{2+}$를 공침시켜 합성하고, 이를 $600^{\circ}C$에서 2시간 열처리하여 순수한 ZnO 나노입자와 Co가 도핑된 ZnO 나노입자를 합성했다. x가 < 0.05일 경우, 2-methylimidazole 링커가 $Zn^{2+}$$Co^{2+}$ 모두에 강하게 배향되어 균질한 Zn/Co ZIFs가 합성되었으며, 열처리를 통해 Co가 균일하게 도핑된 ZnO를 합성할 수 있었다. 반면, $x{\geq}0.05$일 때는 불균질한 Zn/Co ZIFs가 합성되었으며, 열처리 이후 $Co_3O_4$ 이차상이 형성되었다. 합성된 나노입자들에 대한 가스감응특성 평가 결과, 3 at%의 Co가 도핑된 ZnO 센서는 순수한 ZnO와는 달리 trimethylamine에 대해 고감도, 고선택적 가스감응특성을 나타냈다. 본 연구의 bimetallic ZIF 유도 산화물 나노복합체 합성방법은 고성능 가스센서를 설계하는데 활용될 수 있을 것으로 기대된다.

Keywords

References

  1. K.S. Park, Z. Ni, A.P. Cote, J.Y. Choi, R. Huang, F.J. Uribe-Romo, H.K. Chae, M. O'Keeffe and O.M. Yaghi, "Exceptional chemical and thermal stability of zeolitic imidazolate frameworks", Proc. Natl. Acad. Sci. U.S.A. 103 (2006) 10186. https://doi.org/10.1073/pnas.0602439103
  2. X.-C. Huang, Y.-Y. Lin, J.-P. Zhang and X.-M. Chen, "Ligand-directed strategy for zeolite-type metal-organic frameworks: Zinc (ii) imidazolates with unusual zeolitic topologies", Angew. Chem. Int. Ed. 45 (2006) 1557. https://doi.org/10.1002/anie.200503778
  3. H. Bux, F. Liang, Y. Li, J. Cravillon, M. Wiebcke and J. Caro, "Zeolitic imidazolate framework membrane with molecular sieving properties by microwave-assisted solvothermal synthesis", J. Am. Chem. Soc. 131 (2009) 16000. https://doi.org/10.1021/ja907359t
  4. H. Bux, C. Chmelik, J.M. van Baten, R. Krishna and J. Caro, "Novel MOF membrane for molecular sieving predicted by IR diffusion studies and molecular modeling", J. Adv. Mater. 22 (2010) 4741. https://doi.org/10.1002/adma.201002066
  5. K. Zhou, B. Mousavi, Z. Luo, S. Phatanasri, S. Chaemchuen and F. Verpoort, "Characterization and properties of Zn/Co zeolitic imidazolate frameworks vs. ZIF-8 and ZIF-67", J. Mater. Chem. A 5 (2017) 952. https://doi.org/10.1039/C6TA07860E
  6. M. Li, J. Wnag, C. Jiao, C. Wang, Q. Wu and Z. Wang, "Magnetic porous carbon derived from a Zn/Co bimetallic metal-organic framework as an adsorbent for the extraction of chlorophenols from water and honey tea samples", J. Sep. Sci. 39 (2016) 1884. https://doi.org/10.1002/jssc.201600097
  7. Centers for Disease Control and Prevention [CDC] www.cdc.gov/.
  8. N.H. Al-Hardan, M.J. Abdullah, A. Abdul Aziz, H. Ahmad and L.Y. Low, "ZnO thin films for VOC sensing applications", Vacuum, 85 (2010) 101. https://doi.org/10.1016/j.vacuum.2010.04.009
  9. G.A. Mills, V. Walker and H. Mughal, "Quantitative determination of trimethylamine in urine by solid-phase microextraction and gas chromatography-mass spectrometry", J. Chromatogr. B: Biomed. Sci. Appl. 723 (1999) 281. https://doi.org/10.1016/S0378-4347(98)00542-8
  10. H.-S. Woo, C.W. Na, I.-D. Kim and J.-H. Lee, "Highly sensitive and selective trimethylamine sensor using one-dimensional $ZnO-Cr_2O_3$ hetero-nanostructures", Nanotechnology 23 (2012) 245501. https://doi.org/10.1088/0957-4484/23/24/245501
  11. H. Zhao, X. Li, W. Li, P. Wang, S. Chen and X. Quan, "A ZIF-8-based platform for the rapid and highly sensitive detection of indoor formaldehyde", RSC Adv. 4 (2014) 36444. https://doi.org/10.1039/C4RA05113K
  12. Y. Du, R.Z. Chen, J.F. Yao and H.T. Wang, "Facile fabrication of porous ZnO by thermal treatment of zeolitic imidazolate framework-8 and its photocatalytic activity", J. Alloys Compd. 551 (2013) 125. https://doi.org/10.1016/j.jallcom.2012.10.045
  13. A.F. Gross, E. Sherman and J.J. Vajo, "Aqueous room temperature synthesis of cobalt and zinc sodalite zeolitic imidizolate frameworks", Dalton Trans. 41 (2012) 5458. https://doi.org/10.1039/c2dt30174a
  14. B. Pal and P.K. Giri, "Defect mediated magnetic interaction and high $T_c$ ferromagnetism in Co doped ZnO nanoparticles", J. Nanosci. Nanotechnol. 11 (2011) 9167. https://doi.org/10.1166/jnn.2011.4293
  15. A. Kaushik, B. Dalela, R. Rathore, V.S. Vats, B.L. Choudhary, P.A. Alvi, S. Kumar and S. Dalela, "Influence of Co doping on the structural, optical and magnetic properties of ZnO nanocrystals", J. Alloys Compd. 578 (2013) 328. https://doi.org/10.1016/j.jallcom.2013.06.015
  16. L. Zhang, J. Zhao, H. Lu, L. Li, J. Zheng, J. Zhang and H. Li, "Highly sensitive and selective dimethylamine sensors based on hierarchical ZnO architectures composed of nanorods and nanosheet-assembled microspheres", Sens. Actuators B 171-172 (2012) 1101. https://doi.org/10.1016/j.snb.2012.06.040
  17. N.I. Il'chenko and G.I. Golodets, "Catalytic oxidation of ammonia: I. Reaction kinetics and mechanism", J. Catal. 39 (1975) 57. https://doi.org/10.1016/0021-9517(75)90282-1
  18. International Chemical Safety Cards: 0206.
  19. K. Mitsubayashi, Y. Kubotera, K. Yano, Y. Hashimoto, T. Kon, S. Nakakura, Y. Nishi and H. Endo, "Trimethylamine biosensor with flavin-containing monooxygenase type 3 (FMO3) for fish-freshness analysis", Sens. Actuators B 29 (2004) 463.