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1. Introduction

FFT processor is one of the components with hi

gh complexity in the physical layer of OFDM-base

d applications such as IEEE 802.11a/g/n, WPAN, L

TE systems, and so on. Thus, many FFT design ap

proaches have been developed to reduce the compu

tational complexity [1][2].

The radix-2 algorithm is popular due to simple 

butterfly for implementation. However it needs mo

re complex multiplications. The radix-4 algorithm 

can reduce the number of complex multiplications 

following higher butterfly complexity for implemen

tation. For achieving a simple butterfly and reducin

g the number of twiddle factor multiplication, radix

- (=2~5) FFT algorithms have been proposed i

n [3-5].

Among the various FFT architectures, the pipeli

ned architectures provide high throughputs at the c

ost of reasonable hardware overhead. There are tw

o types in the pipelined FFT architecture: feedfor

ward and feedback. Feedforward architectures can 

be classified into single path delay commutator and 

multi-path delay commutator. Feedback architectu

res can be classified into single path delay feedbac

k (SDF) and multi-path delay feedback [6].

For twiddle factor multiplication in [2], CSD mul

tipliers are adopted to efficiently design the compl

ex multipliers composed of four multiplications and 

two additions.

In this paper, we present a low hardware-cost 

and low power 512-point FFT with radix-- S

DF architecture. To reduce the hardware-cost for 

twiddle factor multiplication, we propose new CS

D complex multipliers which provide removal of 

ROM to store  twiddle factors.

2. Design Issues of 512-point FFT

The discrete Fourier transform    of an -p

oint input signal  is defined as
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  
  

  


  ≤ ≤     (1)

where the twiddle factor 
  .

For the computation of (1), large hardware reso

urces and computation time are required. To overc

ome the shortcoming, radix- algorithms with a 

reduced number of complex multiplication have 

been presented.

The 512-point FFT computation with radix- 

algorithms is composed of nine stages. Table 1 sh

ows the sequence of twiddle factors at each stage 

for    and radix-k algorithms, where  m

eans trivial multiplication and ‘#CM’ denotes the 

required number of complex multiplications excl

uding  .

The radix-  and radix-   algorithms have 

less number of complex multiplications and simpl

er twiddle factors compared to the others. The ra

dix-   algorithm is simpler than radix-  algo

rithm in butterfly control. Thus, the radix-   

algorithm is optimal candidate for the FFT desig

n.

Among the various pipelined FFT architectures, 

we adopt SDF approach based on radix- algorit

hm for its low cost and high efficiency [1]. 

Table 1. Base number of twiddle factor

            

          

           

           

           

Fig. 1 shows the proposed architecture of the ra

dix-- 512-point SDF FFT. In order to obtain 

proper data at the butterfly input, two types of b

utterfly (BF1 and BF2 in [3]) and several delay buf

fers with different sizes are used for data shufflin

g in Fig. 1. Control signal (ctrl) is used for switchi

ng the butterfly types. Also, it provides a proper 

control for multiplication of twiddle factor.

3. Proposed FFT Design

3.1 Proposed CSD complex multiplier 

for 
 , 

  and 


In order to design constant complex multiplier w

ith twiddle factors 
 , 

  and 
 , we first find 

out the required constant values for these twiddle 

factors. 

Twiddle factors 
 at stage 6 only need 4 fact

ors (=0~3). By using 
   and the symmetry 

property of complex sinusoidal function, only on

e twiddle factor 
 is required. In the twiddle fac

tor, a constant 
 is needed since 


 

, where  and  denotes 

the real part and imaginary part of t, respectivel

y.

There are 7 twiddle factors for 
  (= 0~4, 6, 

9) at stage 2. Applying rules similar to 
, these 

twiddle factors can be explained by using only th

ree constant values 
 , 

  and 


 .

Twiddle factors 
  at stage 7 need 16 factors 

(=0~10, 12, 14, 15, 18, 21). By the same, the fact

ors can be expressed by 7 values of 
 , 

Fig. 1. 512-point radix-   SDF FFT architecture.
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
 , 

 , 
 , 

 , 
 , an

d 
  as shown in Table 2.

In order to efficiently design constant multiplica

tion, CSD representation and common sub-express

ion (CSE) sharing algorithm in [8] are adopted. Ta

ble 3 shows the CSD representations of 7 coefficie

nts. The CSE '101' (or -10-1) lies in the red soli

d line. Also, CSE '10-1' (or –101) and '1000-1' 

(or –10001) lie in the blue dashed line and purple 

dotted line, respectively. The 7 CSD multipliers ca

n be obtained by using 16 shifters and 13 additions 

as

   ≫
   ≫
   ≫

×
   ≫

×
   ≫ ≫

×
   ≫ ≫

×
    ≫ ≫

×
   ≫ ≫  ≫

×
   ≫ ≫

×
   ≫ ≫

      (2)

where,  and ≫ stands for the multiplicand f

or twiddle factors and the right-shift operation b

y , respectively. Note that the CSD constant com

plex multiplier is only consist of adders, shifters 

and multiplexers with lower hardware resources 

compared to general complex multiplier. 

Table 2. Representation of 



 

  


 

  
  

  
  

 


 

  
  

  
  

 


 

  
  

  
  

 


 

  
  

  
  

 


 

  
    

  
 


 

  
  

  
  

 


 

  
  

  
  

 

Table 3. CSD representation for 
  with 12 bits 

 
 

 
 

 
 

 
 

 
 

 
 

 
 

32Im{ }i
ind W

32Re{ }i
ind W

4
32Re{ }d W

2
32Re{ }d W

6
32Re{ }d W

1
32Re{ }d W

3
32Re{ }d W

5
32Re{ }d W

7
32Re{ }d W

0
32Re{ }d W

16Re{ }iFor d W 

8 Re{ }iFor d W

ind

Fig. 2. Proposed CSD constant multipliers for 
 .

Fig. 2 (a) shows the proposed CSD complex mul

tiplier structure for 
 . The detailed structure of 

CSD multipliers is shown in Fig. 2 (b). To select 

the proper twiddle factor multiplication result in 

Table 2, two type multiplexers are needed by two 

signals (sel1 and sel2). Note that we can design C

SD complex multipliers for 
 and 

  using 
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
 , 

 , and 
 .

3.2 Cascade CSD complex multiplier 




As shown in Fig. 1, the output signals at stage 

4 are multiplied by proper twiddle factors 
  

   ∼  . The complexity of CSD complex mul

tiplier increases as the base number of twiddle fa

ctor increases. Thus, the approach described abo

ve is not practical for  
 . To reduce the requir

ed number of constants for 
 , we utilize 1/8 sy

mmetry property and decomposition of twiddle f

actor [2]. The proposed CSD complex multiplier 

design procedure is as follows

1. Divide the  of 
  into 8 regions(   ∼  ) 

using 1/8 symmetry property.

2. Decompose the  into  (  ∼) and   

(  ∼) as 
  

   



 .

3. Make CSD coefficient table for 
  and 


 , and find the optimized CSE.

By applying the procedure, the required number 

of constant values can be reduced to 16. Table 4 

shows CSD representation of the 16 different value

s. The CSE '101' (or –10-1) and '10-1' (or –101) 

are in the red solid line and blue dashed line, respe

ctively. Also, the CSE '1001' (or –100-1), '100-1

' (or –1001) and '1000-1' lie in the yellow dash- 

double dotted line, green dash-single dotted line a

nd purple dotted line, respectively.

Table 4. CSD representation of 16 values

 


 


0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 -1 0
4 1 0 0 0 0 0 0 0 0 0 -1 0
5 1 0 0 0 0 0 0 0 0 -1 0 0
6 1 0 0 0 0 0 0 0 -1 0 1 0
7 1 0 0 0 0 0 0 0 -1 0 0 0

 


 


18
512( )iW

2
512( )iW

2
512( )iW

ind

Fig. 3. Proposed CSD multiplier structure.
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Fig. 3 shows the proposed cascade CSD complex 

multiplier for 
  which is  composed of coarse 

and fine multiplication. The pipeline technique c

an be used to reduce the critical path. The detail

ed architecture of corse and fine multiplier is sho

wn in Fig. 4. 

4. Results and Comparison

The proposed and previous approaches for 512-

point FFT were designed using Verilog HDL. Thes

e designs are synthesized based on Intel Cyclone 1

0LP  FPGA using QUARTUS PRIME design tool. T

he input and output word-length are 12-bit and 2

5-bit, respectively.

Approach in [7] employs the CSD complex mul

tiplier for 
  and, conventional complex multipl

iers (CCMs) for 
  and 

 . Also, approach in 

[5] employs CSD complex multipliers for 
 , 

  

and 
 , and CCM for 

 . To implement CCM, 

4 modified Booth multiplier and 2 ripple carry ad

der are used. In the proposed approach, only CS

D complex multipliers are used to implement twi

ddle factor multiplication. It provides elimination 

of ROM to store the twiddle factors.

The performance comparison of the proposed ap

proach and previous approaches is summarized in 

Table 5.   Note that the proposed design approach 

achieves 28% gate count reduction and 34% memo

ry reduction compared to radix-approach. In a

ddition, the proposed approach is 18% less than 

radix- approach in power consumption. 

5. Conclusion

We proposed a hardware efficient and low-pow

er 512-point pipelined FFT with radix-- algo

rithm. To reduce the hardware-cost and power c

onsumption, we proposed the CSD complex multi

1i

2i
512Re{ }i

ind W

512Im{ }i
ind W

18
512Block for Re{ }iW 18

512Block for Im{ }iW

2
512Block for Re{ }iW 2

512Block for Im{ }iW

Fig. 4. Detailed structure of CSD complex multiplication for 
 .
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pliers which replace conventional complex multi

plier and remove ROM for storing twiddle factors. 

By simulation, the proposed FFT design achieves 

more than about 28% reduction in gate count and 

18% reduction in power consumption compared t

o the previous approaches.

REFERENCES

[1] C. Yu, M. H. Yen and S. J. Chen, “A 
Low-power 64-point pipeline FFT/IFFT 
processor for OFDM applications”, IEEE 
Consum. Electron., vol. 5, pp. 40-45, 2011.

[2] J. Yu and K. J. Cho, “An area-efficient 
256-point FFT design for WiMAX systems”, 
KIIECT, vol. 11, no. 3, pp. 270-276, 2018.

[3] S. He and M. Torkelson, “Designing pipeline 
FFT processor for OFDM (de)modulation”, 
Proc. URSI Int. Symp. Signals. Syst., Electron., 
1998. pp. 257-262.

[4] J. Y. Oh and M. S. Lim, “New radix-2 to the 
4th power pipeline FFT processor”, IEICE 
trans. Electron., vol. E88-C, no. 8, 
pp.1740-1746, 2005.

[5] T. S. Cho and H. H. Lee, “A high-speed 
low-complexity modified radix-25 FFT 
processor for high rate WPAN applications”, 
IEEE Trans. Very Large Scale Integr. (VLSI) 
Syst., vol. 21, no.1, pp. 187-191, 2013.

[6] M. Garrido, et al., “Pipelined radix-2k 
feedforward FFT architectures”, IEEE Trans. 
Very Large Scale Integr. (VLSI) Syst., vol. 21, 
no.1, pp. 23-32, 2013.

[7] C. Yu and M. H. Yen, “Area-efficient 128- 
to 2048/1536-point pipeline FFT processor for 
LTE and mobile WiMAX systems”, IEEE 
Trans. Very Large Scale Integr. (VLSI) Syst., 
vol. 23, no.9, pp. 1793-2015, 2015.

[8] K. K. Parhi, VLSI Digital Signal Processing 
Systems: Design and Implementation. 
Willey-Interscience, 1999.

Jian Yu [Member]

•Jun. 2001: Hebei Normal Univ., 

Electronic Engr.,  BA

•Mar. 2008: Tianjin Polytechnic 

Univ., Electronic Engr., MS

•Mar. 2016 ∼ current : 

Wonkwang Univ., Dept. of 

Electronic Engr., PhD course

<Research Interests> VLSI Design

Kyung-Ju Cho [Member]

•Aug. 2006 : Chonbuk National 

Univ., Info. & Comm. Engr., 

PhD

•Mar. 2012 ∼ current : 

Wonkwang Univ., Dept. of 

Electronic Engr., Professor 

<Research Interests> VLSI Design, SOC

Table 5. Hardware comparison results of 512-point FFT designs








