
논문 18-11-05-475
한국정보전자통신기술학회논문지(jkiiect)’18-10, Vol.11 No.5

http://dx.doi.org/10.17661/jkiiect.2018.11.5.475

1. Introduction

FFT processor is one of the components with hi

gh complexity in the physical layer of OFDM-base

d applications such as IEEE 802.11a/g/n, WPAN, L

TE systems, and so on. Thus, many FFT design ap

proaches have been developed to reduce the compu

tational complexity [1][2].

The radix-2 algorithm is popular due to simple

butterfly for implementation. However it needs mo

re complex multiplications. The radix-4 algorithm

can reduce the number of complex multiplications

following higher butterfly complexity for implemen

tation. For achieving a simple butterfly and reducin

g the number of twiddle factor multiplication, radix

- (=2~5) FFT algorithms have been proposed i

n [3-5].

Among the various FFT architectures, the pipeli

ned architectures provide high throughputs at the c

ost of reasonable hardware overhead. There are tw

o types in the pipelined FFT architecture: feedfor

ward and feedback. Feedforward architectures can

be classified into single path delay commutator and

multi-path delay commutator. Feedback architectu

res can be classified into single path delay feedbac

k (SDF) and multi-path delay feedback [6].

For twiddle factor multiplication in [2], CSD mul

tipliers are adopted to efficiently design the compl

ex multipliers composed of four multiplications and

two additions.

In this paper, we present a low hardware-cost

and low power 512-point FFT with radix-- S

DF architecture. To reduce the hardware-cost for

twiddle factor multiplication, we propose new CS

D complex multipliers which provide removal of

ROM to store twiddle factors.

2. Design Issues of 512-point FFT

The discrete Fourier transform   of an -p

oint input signal  is defined as

A Low-area and Low-power 512-point Pipelined FFT

Design Using Radix-  for OFDM Applications

Jian Yu*, Kyung-Ju Cho**

Abstract In OFDM-based systems, FFT is a critical component since it occupies large area and

consumes more power. In this paper, we present a low hardware-cost and low power 512-point

pipelined FFT design method for OFDM applications. To reduce the number of twiddle factors and to

choose simple design architecture, the radix-- algorithm are exploited. For twiddle factor

multiplication, we propose a new canonical signed digit (CSD) complex multiplier design method to

minimize the hardware-cost. In hardware implementation with Intel FPGA, the proposed FFT design

achieves more than about 28% reduction in gate count and 18% reduction in power consumption

compared to the previous approaches.

Key Words : low-power, pipelined, FFT, OFDM, constant complex multiplier

This paper was supported by Wonkwang University in 2018.
*Department of Electronic Engineering Wonkwang University
**Corresponding Author: Department of Electronic Engineering Wonkwang University (kjcho@wku.ac.kr)
Received October 11, 2018 Revised October 12, 2018 Accepted October 19, 2018

476 한국정보전자통신기술학회논문지 제11권 제5호

  
  

  


  ≤ ≤ (1)

where the twiddle factor 
  .

For the computation of (1), large hardware reso

urces and computation time are required. To overc

ome the shortcoming, radix- algorithms with a

reduced number of complex multiplication have

been presented.

The 512-point FFT computation with radix-

algorithms is composed of nine stages. Table 1 sh

ows the sequence of twiddle factors at each stage

for    and radix-k algorithms, where  m

eans trivial multiplication and ‘#CM’ denotes the

required number of complex multiplications excl

uding  .

The radix- and radix-  algorithms have

less number of complex multiplications and simpl

er twiddle factors compared to the others. The ra

dix-   algorithm is simpler than radix- algo

rithm in butterfly control. Thus, the radix-  

algorithm is optimal candidate for the FFT desig

n.

Among the various pipelined FFT architectures,

we adopt SDF approach based on radix- algorit

hm for its low cost and high efficiency [1].

Table 1. Base number of twiddle factor

            

          

           

           

           

Fig. 1 shows the proposed architecture of the ra

dix-- 512-point SDF FFT. In order to obtain

proper data at the butterfly input, two types of b

utterfly (BF1 and BF2 in [3]) and several delay buf

fers with different sizes are used for data shufflin

g in Fig. 1. Control signal (ctrl) is used for switchi

ng the butterfly types. Also, it provides a proper

control for multiplication of twiddle factor.

3. Proposed FFT Design

3.1 Proposed CSD complex multiplier

for 
 , 

 and 


In order to design constant complex multiplier w

ith twiddle factors 
 , 

 and 
 , we first find

out the required constant values for these twiddle

factors.

Twiddle factors 
 at stage 6 only need 4 fact

ors (=0~3). By using 
   and the symmetry

property of complex sinusoidal function, only on

e twiddle factor 
 is required. In the twiddle fac

tor, a constant 
 is needed since


 

, where  and  denotes

the real part and imaginary part of t, respectivel

y.

There are 7 twiddle factors for 
 (= 0~4, 6,

9) at stage 2. Applying rules similar to 
, these

twiddle factors can be explained by using only th

ree constant values 
 , 

  and


 .

Twiddle factors 
 at stage 7 need 16 factors

(=0~10, 12, 14, 15, 18, 21). By the same, the fact

ors can be expressed by 7 values of 
 ,

Fig. 1. 512-point radix-   SDF FFT architecture.

A Low-area and Low-power 512-point Pipelined FFT Design Using Radix-  for OFDM Applications 477


 , 

 , 
 , 

 , 
 , an

d 
  as shown in Table 2.

In order to efficiently design constant multiplica

tion, CSD representation and common sub-express

ion (CSE) sharing algorithm in [8] are adopted. Ta

ble 3 shows the CSD representations of 7 coefficie

nts. The CSE '101' (or -10-1) lies in the red soli

d line. Also, CSE '10-1' (or –101) and '1000-1'

(or –10001) lie in the blue dashed line and purple

dotted line, respectively. The 7 CSD multipliers ca

n be obtained by using 16 shifters and 13 additions

as

   ≫
   ≫
   ≫

×
   ≫

×
   ≫ ≫

×
   ≫ ≫

×
    ≫ ≫

×
   ≫ ≫  ≫

×
   ≫ ≫

×
   ≫ ≫

 (2)

where,  and ≫ stands for the multiplicand f

or twiddle factors and the right-shift operation b

y , respectively. Note that the CSD constant com

plex multiplier is only consist of adders, shifters

and multiplexers with lower hardware resources

compared to general complex multiplier.

Table 2. Representation of 



 

  


 

  
  

  
  

 


 

  
  

  
  

 


 

  
  

  
  

 


 

  
  

  
  

 


 

  
    

  
 


 

  
  

  
  

 


 

  
  

  
  

 

Table 3. CSD representation for 
 with 12 bits

 
 

 
 

 
 

 
 

 
 

 
 

 
 

32Im{ }i
ind W

32Re{ }i
ind W

4
32Re{ }d W

2
32Re{ }d W

6
32Re{ }d W

1
32Re{ }d W

3
32Re{ }d W

5
32Re{ }d W

7
32Re{ }d W

0
32Re{ }d W

16Re{ }iFor d W 

8 Re{ }iFor d W

ind

Fig. 2. Proposed CSD constant multipliers for 
 .

Fig. 2 (a) shows the proposed CSD complex mul

tiplier structure for 
 . The detailed structure of

CSD multipliers is shown in Fig. 2 (b). To select

the proper twiddle factor multiplication result in

Table 2, two type multiplexers are needed by two

signals (sel1 and sel2). Note that we can design C

SD complex multipliers for 
 and 

 using

478 한국정보전자통신기술학회논문지 제11권 제5호


 , 

 , and 
 .

3.2 Cascade CSD complex multiplier




As shown in Fig. 1, the output signals at stage

4 are multiplied by proper twiddle factors 


   ∼  . The complexity of CSD complex mul

tiplier increases as the base number of twiddle fa

ctor increases. Thus, the approach described abo

ve is not practical for 
 . To reduce the requir

ed number of constants for 
 , we utilize 1/8 sy

mmetry property and decomposition of twiddle f

actor [2]. The proposed CSD complex multiplier

design procedure is as follows

1. Divide the  of 
 into 8 regions(   ∼ )

using 1/8 symmetry property.

2. Decompose the  into  (  ∼) and 

(  ∼) as 
  

   



 .

3. Make CSD coefficient table for 
 and


 , and find the optimized CSE.

By applying the procedure, the required number

of constant values can be reduced to 16. Table 4

shows CSD representation of the 16 different value

s. The CSE '101' (or –10-1) and '10-1' (or –101)

are in the red solid line and blue dashed line, respe

ctively. Also, the CSE '1001' (or –100-1), '100-1

' (or –1001) and '1000-1' lie in the yellow dash-

double dotted line, green dash-single dotted line a

nd purple dotted line, respectively.

Table 4. CSD representation of 16 values

 


 


0 1 0 0 0 0 0 0 0 0 0 0 0
1 1 0 0 0 0 0 0 0 0 0 0 0
2 1 0 0 0 0 0 0 0 0 0 0 0
3 1 0 0 0 0 0 0 0 0 0 -1 0
4 1 0 0 0 0 0 0 0 0 0 -1 0
5 1 0 0 0 0 0 0 0 0 -1 0 0
6 1 0 0 0 0 0 0 0 -1 0 1 0
7 1 0 0 0 0 0 0 0 -1 0 0 0

 


 


18
512()iW

2
512()iW

2
512()iW

ind

Fig. 3. Proposed CSD multiplier structure.

A Low-area and Low-power 512-point Pipelined FFT Design Using Radix-  for OFDM Applications 479

Fig. 3 shows the proposed cascade CSD complex

multiplier for 
 which is composed of coarse

and fine multiplication. The pipeline technique c

an be used to reduce the critical path. The detail

ed architecture of corse and fine multiplier is sho

wn in Fig. 4.

4. Results and Comparison

The proposed and previous approaches for 512-

point FFT were designed using Verilog HDL. Thes

e designs are synthesized based on Intel Cyclone 1

0LP FPGA using QUARTUS PRIME design tool. T

he input and output word-length are 12-bit and 2

5-bit, respectively.

Approach in [7] employs the CSD complex mul

tiplier for 
 and, conventional complex multipl

iers (CCMs) for 
 and 

 . Also, approach in

[5] employs CSD complex multipliers for 
 , 



and 
 , and CCM for 

 . To implement CCM,

4 modified Booth multiplier and 2 ripple carry ad

der are used. In the proposed approach, only CS

D complex multipliers are used to implement twi

ddle factor multiplication. It provides elimination

of ROM to store the twiddle factors.

The performance comparison of the proposed ap

proach and previous approaches is summarized in

Table 5. Note that the proposed design approach

achieves 28% gate count reduction and 34% memo

ry reduction compared to radix-approach. In a

ddition, the proposed approach is 18% less than

radix- approach in power consumption.

5. Conclusion

We proposed a hardware efficient and low-pow

er 512-point pipelined FFT with radix-- algo

rithm. To reduce the hardware-cost and power c

onsumption, we proposed the CSD complex multi

1i

2i
512Re{ }i

ind W

512Im{ }i
ind W

18
512Block for Re{ }iW 18

512Block for Im{ }iW

2
512Block for Re{ }iW 2

512Block for Im{ }iW

Fig. 4. Detailed structure of CSD complex multiplication for 
 .

480 한국정보전자통신기술학회논문지 제11권 제5호

pliers which replace conventional complex multi

plier and remove ROM for storing twiddle factors.

By simulation, the proposed FFT design achieves

more than about 28% reduction in gate count and

18% reduction in power consumption compared t

o the previous approaches.

REFERENCES

[1] C. Yu, M. H. Yen and S. J. Chen, “A
Low-power 64-point pipeline FFT/IFFT
processor for OFDM applications”, IEEE
Consum. Electron., vol. 5, pp. 40-45, 2011.

[2] J. Yu and K. J. Cho, “An area-efficient
256-point FFT design for WiMAX systems”,
KIIECT, vol. 11, no. 3, pp. 270-276, 2018.

[3] S. He and M. Torkelson, “Designing pipeline
FFT processor for OFDM (de)modulation”,
Proc. URSI Int. Symp. Signals. Syst., Electron.,
1998. pp. 257-262.

[4] J. Y. Oh and M. S. Lim, “New radix-2 to the
4th power pipeline FFT processor”, IEICE
trans. Electron., vol. E88-C, no. 8,
pp.1740-1746, 2005.

[5] T. S. Cho and H. H. Lee, “A high-speed
low-complexity modified radix-25 FFT
processor for high rate WPAN applications”,
IEEE Trans. Very Large Scale Integr. (VLSI)
Syst., vol. 21, no.1, pp. 187-191, 2013.

[6] M. Garrido, et al., “Pipelined radix-2k
feedforward FFT architectures”, IEEE Trans.
Very Large Scale Integr. (VLSI) Syst., vol. 21,
no.1, pp. 23-32, 2013.

[7] C. Yu and M. H. Yen, “Area-efficient 128-
to 2048/1536-point pipeline FFT processor for
LTE and mobile WiMAX systems”, IEEE
Trans. Very Large Scale Integr. (VLSI) Syst.,
vol. 23, no.9, pp. 1793-2015, 2015.

[8] K. K. Parhi, VLSI Digital Signal Processing
Systems: Design and Implementation.
Willey-Interscience, 1999.

Jian Yu [Member]

•Jun. 2001: Hebei Normal Univ.,

Electronic Engr., BA

•Mar. 2008: Tianjin Polytechnic

Univ., Electronic Engr., MS

•Mar. 2016 ∼ current :

Wonkwang Univ., Dept. of

Electronic Engr., PhD course

<Research Interests> VLSI Design

Kyung-Ju Cho [Member]

•Aug. 2006 : Chonbuk National

Univ., Info. & Comm. Engr.,

PhD

•Mar. 2012 ∼ current :

Wonkwang Univ., Dept. of

Electronic Engr., Professor

<Research Interests> VLSI Design, SOC

Table 5. Hardware comparison results of 512-point FFT designs





