DOI QR코드

DOI QR Code

Development and Applications of Pore-filled Ion-exchange Membranes

세공충진 이온교환막의 개발 및 응용

  • Kim, Do-Hyeong (Department of Green Chemical Engineering, Sangmyung University) ;
  • Kang, Moon-Sung (Department of Green Chemical Engineering, Sangmyung University)
  • 김도형 (상명대학교 그린화학공학과) ;
  • 강문성 (상명대학교 그린화학공학과)
  • Received : 2018.10.27
  • Accepted : 2018.10.29
  • Published : 2018.10.31

Abstract

Ion-exchange membrane (IEM) has fixed charge groups and is a separation membrane which is capable of selectively transporting ions of the opposite polarity. Recently, the interest in IEMs has been increasing as the importance of the desalination and energy conversion processes using them as the key components has increased. Since the IEMs determine the efficiency of the above process, it is necessary to improve the separation performance and durability of them and also to lower the expensive membrane price, which is a hindrance to the widening application of the IEM process. Therefore, it is urgent to develop high-performance and low-cost IEMs. Among various types of IEMs, pore-filled membranes prepared by filling ionomer into a porous polymer substrate are intermediate forms of homogeneous membranes and heterogeneous membranes. The production cost would be cheap like the case of heterogeneous membranes because of the use of inexpensive supports and the reduction of the amount used of raw materials, and at the same time, they exhibit excellent electrochemical characteristics close to homogeneous membranes. In this review, major research and development trends of pore-filled IEMs, which are attracting attention as high-performance and low-cost IEMs, have been summarized and reported according to the application fields.

이온교환막은 고정 전하기를 가지고 있어 반대 극성의 이온만 선택적으로 수송할 수 있는 분리막이다. 최근 이온교환막을 핵심부품으로 사용하는 탈염 공정 및 에너지 변환 공정의 중요도가 증가함에 따라 이온교환막에 대한 관심도 점차 높아지고 있다. 이온교환막은 상기 공정의 효율을 결정하기 때문에 막의 분리 성능 및 내구성을 향상시켜야 하며 또한 이온교환막 공정의 확대 적용을 가로막는 걸림돌이 되고 있는 비싼 막 가격도 낮춰야 한다. 따라서 고성능 저가 이온교환막의 개발이 시급한 과제라고 할 수 있다. 이온교환막의 다양한 형태 중 다공성 고분자 기재에 이오노머(ionomer)를 충진 시켜 제조되는 세공충진막은 균질막과 불균질막의 중간적인 형태이다. 저렴한 지지체의 사용과 원료 사용량의 감소로 인해 불균질막처럼 제조 단가가 저렴하며 동시에 균질막에 가까운 우수한 전기화학적 특성을 나타낸다. 본 총설에서는 최근 고성능 저가 이온교환막 기술로 주목 받고 있는 세공충진 이온교환막의 주요 연구개발 동향을 응용 분야별로 구분하여 정리 보고하였다.

Keywords

References

  1. W. D. Schroer, "Polymerization of En-sulfur Compounds", Methoden der organischen Chemie, Vol. E 20, Georg Thieme, Stuttgart-New York, 4th ed., 1255 (1987).
  2. T. Yamaguchi, F. Miyata, and S.-i. Nakao, "Pore-filling type polymer electrolyte membranes for a direct methanol fuel cell", J. Membr. Sci., 214, 283 (2003). https://doi.org/10.1016/S0376-7388(02)00579-3
  3. D.-H. Kim and M.-S. Kang, "Preparation and characterizations of ionomer-coated pore-filled ion-exchange membranes for reverse electrodialysis", Membr. J., 26, 43 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.1.43
  4. R. W. Baker, Membrane technology and applications, 3rd ed, John Wiley & Sons Ltd., West Sussex (2012).
  5. N. P. Berezina, N. A. Kononenko, O. A. Dyomina, and N. P. Gnusin, "Characterization of ion-exchange membrane materials: Properties vs structure", Adv. Colloid Interface Sci., 139, 3 (2008). https://doi.org/10.1016/j.cis.2008.01.002
  6. A. M. Mika, R. F. Childs, J. M. Dickson, B. E. McCarry, and D. R. Gagnon, "A new class of polyelectrolyte-filled microfiltration membranes with environmentally controlled porosity", J. Membr. Sci., 108, 37 (1995). https://doi.org/10.1016/0376-7388(95)00140-2
  7. W. Jiang, R. F. Childs, A. M. Mika, and J. M. Dickson, "Pore-filled cation-exchange membranes containing poly(styrenesulfonic acid) gels", Desalination, 159, 253 (2003). https://doi.org/10.1016/S0011-9164(03)90077-4
  8. X. Zhang, S. Xu, J. Zhou, W. Zhao, S. Sun, and C. Zhao, "Anion-responsive poly(ionic liquid)s gating membranes with tunable hydrodynamic permeability", ACS App. Mater. Interfaces, 9, 32237 (2017). https://doi.org/10.1021/acsami.7b08740
  9. D. M. Stachera, R. F. Childs, A. M. Mika, and J. M. Dickson, "Acid recovery using diffusion dialysis with poly(4-vinylpyridine)-filled microporous membranes", J. Membr. Sci., 148, 119 (1998). https://doi.org/10.1016/S0376-7388(98)00168-9
  10. D.-H. Kim, J.-H. Park, S.-J. Seo, J.-S. Park, S. Jung, Y. S. Kang, J.-H. Choi, and M.-S. Kang, "Development of thin anion-exchange pore-filled membranes for high diffusion dialysis performance", J. Membr. Sci., 447, 80 (2013). https://doi.org/10.1016/j.memsci.2013.07.017
  11. V. Chavan, C. Agarwal, V. C. Adya, and A. K. Pandey, "Hybrid organic-inorganic anion-exchange pore-filled membranes for the recovery of nitric acid from highly acidic aqueous waste streams", Water Res., 133, 87 (2018). https://doi.org/10.1016/j.watres.2018.01.023
  12. L. Wang and S. Lin, "Membrane capacitive deionization with constant current vs constant voltage charging: Which is better", Environ. Sci. Technol., 52, 4051 (2018). https://doi.org/10.1021/acs.est.7b06064
  13. J. S. Kim, Y. S. Jeon, and J. W. Rhim, "Application of poly(vinyl alcohol) and polysulfone based ionic exchange polymers to membrane capacitive deionization for the removal of mono- and divalent salts", Sep. Purif. Technol., 157, 45 (2016). https://doi.org/10.1016/j.seppur.2015.11.011
  14. W. Tang, D. He, C. Zhang, and P. Kovalsky, T. D. Waite, "Comparison of faradaic reactions in capacitive deionization (CDI) and membrane capacitive deionization (MCDI) water treatment processes", Water Res., 120, 229 (2017). https://doi.org/10.1016/j.watres.2017.05.009
  15. Y. S. Jeon, S. I. Cheong, and J. W. Rhim, "Design shape of CDI cell applied with APSf and SPEEK and performance in MCDI", Macromol. Res., 25, 712 (2017). https://doi.org/10.1007/s13233-017-5064-2
  16. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Development and application of cation-exchange membranes including chelating resin for efficient heavy-metal ion removal", Membr. J., 27, 129 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.2.129
  17. Q. Qiu, J.-H. Cha, Y.-W. Choi, J.-H. Choi, J. Shin, and Y.-S. Lee, "Preparation of polyethylene membranes filled with crosslinked sulfonated polystyrene for cation exchange and transport in membrane capacitive deionization process", Desalination, 417, 87 (2017). https://doi.org/10.1016/j.desal.2017.05.008
  18. D.-H. Kim, Y.-E. Choi, J.-S. Park, and M.-S. Kang, "Capacitive deionization employing pore-filled cation-exchange membranes for energy-efficient removal of multivalent cations", Electrochim. Acta, 295, 164 (2019). https://doi.org/10.1016/j.electacta.2018.10.124
  19. E. Brauns, "Salinity gradient power by reverse electrodialysis: Effect of model parameters on electrical power output", Desalination, 237, 378-391 (2009). https://doi.org/10.1016/j.desal.2008.10.003
  20. H.-K. Kim, M.-S. Lee, S.-Y. Lee, Y.-W. Choi, N.-J. Jeong, and C.-S. Kim, "High power density of reverse electrodialysis with pore-filling ion exchange membranes and a high open-area spacer", J. Mater. Chem. A, 3, 16302 (2015). https://doi.org/10.1039/C5TA03571F
  21. M.-S. Lee, H.-K. Kim, C.-S. Kim, H.-Y. Suh, K.-S. Nahm, and Y.-W. Choi, "Thin pore-filled ion exchange membranes for high power density in reverse electrodialysis: Effects of structure on resistance, stability, and ion selectivity", ChemistrySelect, 2, 1974 (2017). https://doi.org/10.1002/slct.201700167
  22. H.-B. Song, H.-N. Moon, D.-H. Kim, and M.-S. Kang, "Preparation and electrochemical applications of pore-filled ion-exchange membranes with well-adjusted cross-linking degrees: Part II. Reverse electrodialysis", Membr. J., 27, 441 (2017). https://doi.org/10.14579/MEMBRANE_JOURNAL.2017.27.5.441
  23. M. Skyllas-Kazacos and F. Grossmith, "Efficient vanadium redox flow cell", J. Electrochem. Soc., 134, 2950 (1987). https://doi.org/10.1149/1.2100321
  24. W. Wang, Q. Luo, B. Li, X. Wei, L. Li, and Z. Yang, "Recent progress in redox flow battery research and development", Adv. Funct. Mater., 23, 970 (2013). https://doi.org/10.1002/adfm.201200694
  25. C. Ding, H. Zhang, X. Li, T. Liu, and F. Xing, "Vanadium flow battery for energy storage: prospects and challenges", J. Phys. Chem. Lett., 4, 1281 (2013). https://doi.org/10.1021/jz4001032
  26. B. Jiang, L. Yu, L. Wu, D. Mu, L. Liu, J. Xi, and X. Qiu, "Insights into the impact of the Nafion membrane pretreatment process on vanadium flow battery Performance", ACS Appl. Mater. Interfaces, 8, 12228 (2016). https://doi.org/10.1021/acsami.6b03529
  27. S. C. Chieng, M. Kazacos, and M. S. Kazacos, "Preparation and evaluation of composite membrane for vanadium redox battery application", J. Power Sources, 39, 11 (1992). https://doi.org/10.1016/0378-7753(92)85002-R
  28. D. Chen, M. A. Hickner, E. Agar, and E. C. Kumbur, "Optimized anion exchange membranes for vanadium redox flow batteries", ACS Appl. Mater. Interfaces, 5, 7559 (2013). https://doi.org/10.1021/am401858r
  29. S.-J. Seo, B.-C. Kim, K.-W. Sung, J. Shim, J.-D. Jeon, K.-H. Shin, S.-H. Yun, J.-Y. Lee, and S.-H. Moon, "Electrochemical properties of pore-filled anion exchange membranes and their ionic transport phenomena for vanadium redox flow battery applications", J. Membr. Sci., 428, 17 (2013). https://doi.org/10.1016/j.memsci.2012.11.027
  30. M.-A. Park, J. Shim, S.-K. Park, J.-D. Jeon, C.-S. Jin, L. B. Lee, and K.-H. Shin, "Poly(vinylbenzyl chloride-glycidyl methacrylate)/polyethylene composite anion exchange membranes for vanadium redox battery application", Bull. Korean Chem. Soc., 34, 1651 (2013). https://doi.org/10.5012/bkcs.2013.34.6.1651
  31. D.-H. Kim, J.-S. Park, M. Choun, J. Lee, and M.-S. Kang, "Pore-filled anion-exchange membranes for electrochemical energy conversion applications", Electrochim. Acta, 222, 212 (2016). https://doi.org/10.1016/j.electacta.2016.10.041
  32. J. Kim, Y. Lee, J.-D. Jeon, and S.-Y. Kwak, "Ion-exchange composite membranes pore-filled with sulfonated poly(ether ether ketone) and Engelhard titanosilicate-10 for improved performance of vanadium redox flow batteries", J. Power Sources, 383, 1 (2018). https://doi.org/10.1016/j.jpowsour.2018.02.028
  33. M. S. Lee, H. G. Kang, J. D. Jeon, Y. W. Choi, and Y. G. Yoon, "A novel amphoteric ion-exchange membrane prepared by the pore-filling technique for vanadium redox flow batteries", RSC Adv., 6, 63023 (2016). https://doi.org/10.1039/C6RA07790K
  34. D.-H. Kim, S.-J. Seo, M.-J. Lee, J.-S. Park, S.-H. Moon, Y. S. Kang, Y.-W. Choi, and M.-S. Kang, "Pore-filled anion-exchange membranes for nonaqueous redox flow batteries with dual-metal-complex redox shuttles", J. Membr. Sci., 454, 44 (2014). https://doi.org/10.1016/j.memsci.2013.11.051
  35. A. Kirubakaran, S. Jain, and R. K. Nema, "A review on fuel cell technologies and power electronic interface", Renew. Sust. Energ. Rev., 13, 2430 (2009). https://doi.org/10.1016/j.rser.2009.04.004
  36. T. Yamaguchi, F. Miyata, and S.-i. Nakao, "Polymer electrolyte membranes with a pore-filling structure for a direct methanol fuel cell", Adv. Mater., 15, 1198 (2003). https://doi.org/10.1002/adma.200304926
  37. B.-Y. Wang, C. K. Tseng, C.-M. Shih, Y.-L. Pai, H.-P. Kuo, and S. J. Lue, "Polytetrafluoroethylene (PTFE)/silane cross-linked sulfonated poly(styreneethylene/butylene-styrene) (sSEBS) composite membrane for direct alcohol and formic acid fuel cells", J. Membr. Sci., 464, 43 (2014). https://doi.org/10.1016/j.memsci.2014.03.076
  38. A. L. Mong, S. Yang, and D. Kim, "Pore-filling polymer electrolyte membrane based on poly(arylene ether ketone) for enhanced dimensional stability and reduced methanol permeability", J. Membr. Sci., 543, 133 (2017). https://doi.org/10.1016/j.memsci.2017.07.060
  39. K. Kim, S.-K. Kim, J. O. Park, S.-W. Choi, K.-H. Kim, T. Ko, C. Pak, and J.-C. Lee, "Highly reinforced pore-filling membranes based on sulfonated poly(arylene ether sulfone)s for high-temperature/low-humidity polymer electrolyte membrane fuel cells", J. Membr. Sci., 537, 11 (2017). https://doi.org/10.1016/j.memsci.2017.05.014
  40. S.-H. Yun, J.-J. Woo, S.-J. Seo, L. Wu, D. Wu, T. Xu, and S.-H. Moon, "Sulfonated poly(2,6-dimethyl-1,4-phenylene oxide) (SPPO) electrolyte membranes reinforced by electrospun nanofiber porous substrates for fuel cells", J. Membr. Sci., 367, 296 (2011). https://doi.org/10.1016/j.memsci.2010.11.017
  41. H. Jung, K. Fujii, T. Tamaki, H. Ohashi, T. Ito, and T. Yamaguchi, "Low fuel crossover anion exchange pore-filling membrane for solid-state alkaline fuel cells", J. Membr. Sci., 373, 107 (2011). https://doi.org/10.1016/j.memsci.2011.02.044
  42. Y. Zhao, H. Yu, F. Xie, Y. Liu, Z. Shao, and B. Yi, "High durability and hydroxide ion conducting pore-filled anion exchange membranes for alkaline fuel cell applications", J. Power Sources, 269, 1 (2014). https://doi.org/10.1016/j.jpowsour.2014.06.026