DOI QR코드

DOI QR Code

Sorption Characteristics of Butanol/Water and Isopropanol/Water Solutions on the FASs Coated Inorganic Membrane

FASs로 코팅한 무기막에 대한 부탄올/물, 이소프로판올/물 용액의 수착 특성

  • Lee, Kwang-Rae (Department of Chemical Engineering, Kangwon National University)
  • 이광래 (강원대학교 공과대학 화학공학과)
  • Received : 2018.09.03
  • Accepted : 2018.09.17
  • Published : 2018.10.31

Abstract

The sorption amounts of butanol/water and isopropanol/water solution on the surface modified with FASs (fluoroalkylsilanes) hydrophobic membrane were measured and analyzed using Hansen's solubility parameters. The difference of the solubility parameter of butanol (${\delta}_t=20.4$) and that of the surface modified with FASs hydrophobic membrane (${\delta}_t=16.9$) was greater than the case of isopropanol (${\delta}_t=24.6$), which might explain the result that the sorption amount of butanol was much higher than that of isopropanol. We might also explain the effect of the polar force (${\delta}_p$) on the sorption amount. The difference (${\Delta}$) between FASs polar force (${\delta}_p=4.6$) and butanol polar force (${\delta}_p=6.3$) was much smaller than that between FASs polar force (${\delta}_p=4.6$) and isopropanol polar force (${\delta}_p=9.0$), which meant that the interaction of butanol-FASs was much greater than that of isopropanol-FASs, and resulted in greater sorption amount of butanol on the FASs. This study showed Hansen's solubility parameters might be used for analysis of sorption characteristics of alcohol on membrane and solubility of solute in solvent.

FASs (fluoroalkylsilanes)로 표면 개질한 소수성 막에 대한 부탄올/물, 이소프로판올/물 용액의 수착(sorption)량을 측정하였으며 이들 수착 특성을 Hansen 용해도 파라미터를 이용하여 해석하였다. 부탄올의 수착량이 이소프토판올보다 많았으며, 이는 부탄올의 용해도 파라미터(${\delta}_t=20.4$)와 FASs 소수성 막의 용해도 파라미터(${\delta}_t=16.9$)와의 차이가 이소프로판올 (${\delta}_t=24.6$)과의 차이보다 작기 때문인 것으로 설명할 수 있다. 극성력(${\delta}_p$) 측면에서 살펴보면, FASs 극성력(${\delta}_p=4.6$)과 부탄올의 극성력(${\delta}_p=6.3$)과의 차이가 FASs 극성력(${\delta}_p=4.6$)과 이소프로판올의 극성력(${\delta}_p=9.0$)과의 차이보다 작다. 이는 부탄올-FASs 간의 극성력 차이가 이소프로판올-FASs 간의 극성력 차이보다 작아서 부탄올-FASs 간의 상호인력이 크다는 것을 의미하며, 수착량이 크게 나타나는 결과를 설명할 수 있다. 본 실험결과로부터 막에 대한 알코올의 수착특성, 용매에 대한 용질의 용해도 등을 분석하는데 용해도 파라미터를 이용할 수 있음을 알 수 있다.

Keywords

References

  1. P. Durre, "Biobutanol: An attractive biofuel", Biotechnology J., 2, 1525 (2007). https://doi.org/10.1002/biot.200700168
  2. M. Matsumura, S. Takehara, and H. Kataoka, "Continuous butanol/isopropanol fermentation in down-flow column reactor coupled with pervaporation using supported liquid membrane", Biotechnol. Bioeng., 39, 148 (1992). https://doi.org/10.1002/bit.260390205
  3. P. Izak, K. Friess, V. Hynek, W. Ruth, Z. Fei, J.P. Dyson, and U. Kragl, "Separation properties of supported ionic liquid-polydimethylsiloxane membrane in pervaporation process", Desalination, 241, 182 (2009). https://doi.org/10.1016/j.desal.2007.12.050
  4. E. A. Fouad and X. Feng, "Pervaporative separation of n-butanol from dilute aqueous solutions using silicalite-filled poly(dimethylsiloxane) membranes", J. Membr. Sci., 339, 120 (2009). https://doi.org/10.1016/j.memsci.2009.04.038
  5. E. J. Jeon, A. S. Kim, and Y. T. Lee, "Pervaporation of butanol/water mixtures using siloxane polymer/ceramic composite membranes", Desalination Water Treat., 48, 17 (2012). https://doi.org/10.1080/19443994.2012.698723
  6. J. Niemisto, W. Kujawski, and R. L. Keiski, "Pervaporation performance of composite poly (dimethylsiloxane) membrane for butanol recovery from model solutions", J. Membr. Sci., 434, 55 (2013). https://doi.org/10.1016/j.memsci.2013.01.047
  7. R. A. Peterson, C. G. Hill, and M. A. Anderson, "Permselectivity characteristics of supported ceramic alumina membranes", Sep. Sci. Technol., 25, 1281 (1990). https://doi.org/10.1080/01496399008050391
  8. Y. Zhu, S. Xia, G. Liu, and W. Jin, "Preparation of ceramic-supported poly(vinyl alcohol)-chitosan composite membranes and their applications in pervaporation dehydration of organic/water mixtures", J. Membr. Sci., 349, 341 (2010). https://doi.org/10.1016/j.memsci.2009.11.065
  9. K. H. Song and K. R. Lee, "Permeation flux of ester compounds through hydrophobic membrane by pervaporation", Membr. J., 26, 197 (2016). https://doi.org/10.14579/MEMBRANE_JOURNAL.2016.26.3.197
  10. C. M. Hansen, "Chap. 35, Solubility Parameters", Paint and Coating Testing Manual, 383 (1995).
  11. R. F. Fedors, "A method for estimating both the solubility parameters and molar volumes of liquids", Polym. Eng. Sci., 14, 147 (1974). https://doi.org/10.1002/pen.760140211
  12. C. M. Hansen, "Hansen Solubility Parameters; A User's Handbook", CRC Press, 2nd ed. (2012).
  13. K. H. Song and K. R. Lee, "Prediction of affinity between membrane and esters using solubility parameter", Membr. J., 24, 484 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.6.484
  14. BASF-Industrial Petrochemicals Europe, "n-Butanol, Technical Information, M 2084 e August 2016", http://www.solvents.basf.com/portal/streamer?fid=278912.
  15. A. F. M Barton, "CRC handbook of solubility parameters and other cohesion parameters", CRC Press, 2nd ed. (1991).