DOI QR코드

DOI QR Code

Elucidation of the Mechanism of Propylene/Propane Separation through Faujasite Zeolite Membrane

Faujasite 제올라이트 분리막을 통한 프로필렌/프로판 분리 메카니즘 규명에 대한 연구

  • Min, Hae-Hyun (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University) ;
  • Park, You-In (Center for Convergent Chemical Process, National Research Council of Science & Technology) ;
  • Chang, Jong-San (Center for Convergent Chemical Process, National Research Council of Science & Technology) ;
  • Park, Yong-Ki (Center for Convergent Chemical Process, National Research Council of Science & Technology) ;
  • Cho, Churl-Hee (Department of Energy Science and Technology, Graduate School of Energy Science and Technology (GEST), Chungnam National University)
  • 민혜현 (충남대학교 에너지과학기술대학원 에너지과학기술학과) ;
  • 박유인 (국가과학기술연구회 CCP융합연구단) ;
  • 장종산 (국가과학기술연구회 CCP융합연구단) ;
  • 박용기 (국가과학기술연구회 CCP융합연구단) ;
  • 조철희 (충남대학교 에너지과학기술대학원 에너지과학기술학과)
  • Received : 2018.10.22
  • Accepted : 2018.10.27
  • Published : 2018.10.31

Abstract

In this study, propylene/propane separation mechanism through NaY zeolite membrane was investigated. As permeation temperature increased, both propylene and propane permeances increased, saturated and decreased again, and a maximum selectivity was shown at around 50 to $60^{\circ}C$. Propane permeance in mixed gas experiment was much smaller than that in single gas experiment, and propylene/propane mixed gas selectivity was much larger than single gas permselectivity. As permeation time increased in transient permeation experiment, propylene permeance initially increased and saturated, while propane permeance decreased and saturated. All the experimental results announced that propylene/propane separation through NaY zeolite membrane was from preferentially adsorbed propylene molecules. The adsorbed propylene molecules efficiently prevented propane molecules from permeating through the membrane, and sufae diffused through the membrane. NaY zeolite capillary membrane prepared in the present study showed a high mixed gas selectivity of 12 and high propylene permeance of 497 GPU for a propylene/propane (89 : 11) mixture at $50^{\circ}C$ and 4 bar. Therefore, it was concluded that NaY zeolite membrane is one of promising membrane materials for propylene/propane separation due to the low cost and high separation performance.

본 연구에서는 NaY 제올라이트 분리막의 프로필렌/프로판 분리 메카니즘을 규명하고자 하였다. 투과온도 증가 시에 프로필렌과 프로판 투과도는 증가하다 최고점을 보이고 감소하였고 약 $50-60^{\circ}C$ 부근에서 최대 선택도를 보였다. 혼합가스 프로판 투과도는 단일가스 투과도 보다 작았고, 프로필렌/프로판 혼합가스 선택도는 단일가스 투과선택도보다 우수하였다. 시간에 따른 혼합가스 투과거동 실험에서, 투과시간이 증가함에 따라서 프로필렌 투과도는 증가하는 반면, 프로판의 투과도는 감소하였고 선택도는 증가하였다. 위의 모든 실험결과는 NaY 제올라이트 분리막을 통한 프로필렌/프로판 분리는 선택적으로 흡착된 프로필렌의 프로판 투과 억제에 의해 일어나며 프로필렌 투과는 표면확산에 의해 지배된다는 것을 나타낸다. 프로필렌/프로판(89 : 11) 혼합가스에 대하여 분리막은 $50^{\circ}C$, 4 bar에서 선택도 12, 프로필렌 투과도 497 GPU를 나타내었다. 따라서 본 연구에서 제조된 NaY 제올라이트 모세관 분리막은 가격이 저렴하고 우수한 분리성능을 보이기 때문에 프로필렌/프로판 분리를 위한 유망한 분리막 소재임을 확인할 수 있었다.

Keywords

References

  1. C. Castel and E. Favre, "Membrane separations and energy efficiency", J. Membr. Sci., 548, 345 (2018). https://doi.org/10.1016/j.memsci.2017.11.035
  2. C. Y. Park, S. H. Han, J. H. Kim, and Y. Lee, "Simulation of separation properties of propylene/propane in silver nanoparticle containing facilitated transport membrane", Membr. J., 24, 409 (2014). https://doi.org/10.14579/MEMBRANE_JOURNAL.2014.24.5.409
  3. R. Zarca, A. Ortiz, D. Gorri, L. T. Biegler, and I. Ortiz, "Optimized distillation coupled with state-of-the-art membranes for propylene purification", J. Membr. Sci., 556, 321 (2018). https://doi.org/10.1016/j.memsci.2018.04.016
  4. H. J. Shin, S. H. Choi, J. H. Kim, I. J. Park, and S. B. Lee, "Permeation behavior of olefin/N itrogen through siloxane based polymeric membranes", Membr. J., 13, 246 (2003).
  5. Y. Hasegawa, K. Kusakabe, and S. Morooka, "Effect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube", Chem. Eng. Sci., 56, 4273 (2001). https://doi.org/10.1016/S0009-2509(01)00106-3
  6. J. I. Hayashi, H. Mizuta, M. Yamamoto, K. Kusakabe, S. Morooka, and S. H. Suh, "Separation of ethane/ethylene and propane/propylene systems with a carbonized BPDA-pp'ODA polyimide membrane", Ind. Eng. Chem. Res., 35, 4176 (1996). https://doi.org/10.1021/ie960264n
  7. V. Nikolakis, G. Xomeritakis, A. Abibi, M. Dickson, M. Tsapatsis, and D. G. Vlachos, "Growth of a faujasite-type zeolite membrane and its application in the separation of saturated / unsaturated hydrocarbon mixtures", J. Membr. Sci., 184, 209 (2001). https://doi.org/10.1016/S0376-7388(00)00623-2
  8. I. Tiscornia, S. Irusta, C. Tellez, J. Coronas, and J. Santamaria, "Separation of propylene/propane mixtures by titanosilicate ETS-10 membranes prepared in one-step seeded hydrothermal synthesis", J. Membr. Sci., 311, 326 (2008). https://doi.org/10.1016/j.memsci.2007.12.028
  9. M. Masahiko, S. Masahiro, S. Motomu, K. Nobohiru, and A. Michiaki, "Olefin separation method and zeoloite membrane complex", world patent 2015141686 A 1, September 24 (2015).
  10. P. F. Zito, A. Caravella, A. Brunetti, E. Drioli, and G. Barbieri, "$CO_2/H_2$ selectivity prediction of NaY, DD3R, and silicalite zeolite membranes", Ind. Eng. Chem. Res., 57, 11431 (2018). https://doi.org/10.1021/acs.iecr.8b02707
  11. F. A. Da Silva and A. E. Rodrigues, "Adsorption equilibria and kinetics for propylene and propane over 13X and 4A zeolite pellets", Ind. Eng. Chem. Res., 38, 2051 (1999). https://doi.org/10.1021/ie980640z
  12. M. Kanezashi, M. Kawano, T. Yoshioka, and T. Tsuru, "Organic-inorganic hybrid silica membranes with controlled silica network size for propylene/propane separation", Ind. Eng. Chem. Res., 51, 944 (2012). https://doi.org/10.1021/ie201606k
  13. S. Divekar, A. Nanoti, S. Dasgupta, Aarti, R. Chauhan, P. Gupta, M. O. Garg, S. P. Singh, and I. M. Mishra, "Adsorption equilibria of propylene and propane on zeolites and prediction of their binary adsorption with the ideal adsorbed solution theory", J. Chem. Eng. Data., 61, 2629-2637 (2016). https://doi.org/10.1021/acs.jced.6b00294
  14. U. Lee, J. Kim, I. Chae, and C. Han, "Techno-economic feasibility study of membrane based propane/propylene separation process", Chem. Eng. Process. Process Intensif., 119, 62-72 (2017). https://doi.org/10.1016/j.cep.2017.05.013
  15. Y. Hasegawa, K. Kusakabe, and S. Morooka, "ffect of temperature on the gas permeation properties of NaY-type zeolite formed on the inner surface of a porous support tube", Chem. Eng. Sci., 56, 4273 (2001). https://doi.org/10.1016/S0009-2509(01)00106-3
  16. I. G. Giannakopoulos and V. Nikolakis, "Separation of propylene/propane mixtures using faujasite-type zeolite membranes", Ind. Eng. Chem. Res., 44, 226 (2005). https://doi.org/10.1021/ie049508r
  17. H. Jarvelin and J. R. Fair, "Adsorptive separation of propylene-propane mixtures", Ind. Eng. Chem. Res., 32, 2201 (1993). https://doi.org/10.1021/ie00022a001
  18. P. Sharma, S. J. Jeong, M. H. Han, and C. H. Cho, "Influence of silica precursors on octahedron shaped nano NaY zeolite crystal synthesis", J. Taiwan Inst. Chem. Eng., 50, 259 (2015). https://doi.org/10.1016/j.jtice.2014.12.025
  19. A. Huang, Y. S. Lin, and W. Yang, "Synthesis and properties of A-type zeolite membranes by secondary growth method with vacuum seeding", J. Membr. Sci., 245, 41 (2004). https://doi.org/10.1016/j.memsci.2004.08.001
  20. C. H. Cho, J. G. Yeo, Y. S. Ahn, M. H. Han, Y. H. Kim, S. H. Hyun, and N.Materials, "Secondary Growth of Sodium Type Faujasite Zeolite Layers on a Porous ${\alpha}-Al_2O_3$ Tube and the $CO_2/N_2$ Separation", Membr. J., 17, 254-268 (2007).
  21. S. J. Jeong, J. Yeo, M. H. Han, and C. H. Cho, "A study on permeation of $CO_2$ -$N_2$ -$O_2$ mixed gases through a NaY zeolite membrane under permeate evacuation mode", Membr. J., 23, 352 (2013).
  22. Y. H. Huang, J. W. Johnson, A. I. Liapis, and O. K. Crosser, "Experimental determination of the binary equilibrium adsorption and desorption of propane-propylene mixtures on 13X molecular sieves by a differential sorption bed system and investigation of their equilibrium expressions", Sep. Technol., 4, 156-166 (1994). https://doi.org/10.1016/0956-9618(94)80018-9
  23. M. P. Bernal, J. Coronas, M. Menendez, and J. Santamaria, "Characterization of zeolite membranes by temperature programmed permeation and step desorption", J. Membr. Sci., 195, 125 (2001).
  24. I. Tiscornia, S. Irusta, C. Tellez, J. Coronas, and J. Santamaria, "Separation of propylene/propane mixtures by titanosilicate ETS-10 membranes prepared in one-step seeded hydrothermal synthesis", J. Membr. Sci., 311, 326 (2008). https://doi.org/10.1016/j.memsci.2007.12.028
  25. C. H. Cho, J. G. Yeo, J. S. Kim, Y. S. Ahn, M. H. Han, J. Ho, and C. H. Lee, "A simultaneous improvement in $CO_2$ flux and $CO_2/N_2$ separation factor of sodium-type FAU zeolite membranes through 13X zeolite beads embedding", Mater. Res., 17, 2068 (2007).