DOI QR코드

DOI QR Code

Analytical Prediction and Validation of Elastic Behavior of Carbon-Fiber-Reinforced Woven Composites

탄소섬유강화 직조복합재의 탄성 거동의 이론적 예측 및 검증

  • Received : 2018.08.06
  • Accepted : 2018.10.26
  • Published : 2018.10.31

Abstract

In this paper, elastic behavior of woven fabric composites with various fiber yarn structure were predicted through a theoretical calculation model. A representative volume elements (RVE) that can represent the mechanical properties of the woven composites were selected and crimp angle of the weave yarn was defined by several sinusoidal functions. The effective material properties of the woven composite such as young's modulus, shear modulus and poisson's ratio was predicted by classical laminate theory (CLT). The fiber volume fractions were calculated according to the shape and pattern (plain, twill weave) of the fiber yarn, and the elastic behavior of each woven composite was obtained through a theoretical calculation model. Also, to verify the theoretical predictions, woven composite specimens of plain and twill weave were fabricated by vacuum assisted resin transfer molding (VARTM) process and then mechanical test was conducted. As a results, a good correlation between theoretical and experimental results for the elastic behavior of woven composites could be achieved.

본 논문에서는 이론적인 계산 모델을 이용하여 다양한 섬유 다발 구조를 갖는 직조섬유강화 복합재의 탄성 거동을 예측하였다. 직조 복합재의 기계적 물성을 대표할 수 있는 대표체적요소 (RVE)을 설정하였으며, 직조 다발의 굴곡을 다양한 정현파 함수로 정의하였다. 고전적층이론 (CLPT)를 이용하여 영률, 전단 탄성계수, 포아송비와 같은 직조복합재의 유효물성을 예측하였다. 섬유 다발의 구조와 형태 (평직, 능직)에 따라 섬유 부피 분율을 계산하였으며 각각의 탄성 거동을 이론적인 계산 모델을 통해 예측하였다. 또한, 이론적 예측 결과의 검증을 위해 진공수지주입(VARTM) 공정을 사용하여 평직 및 능직 형태의 복합재 시편을 제작 후 물성 시험을 진행하여 실험 결과를 이론적 예측 결과와 비교하였다. 결과적으로 직조 복합재의 탄성 거동에 대한 이론적 결과와 실험 결과 간에 매우 높은 정확도를 갖는 것을 확인할 수 있었다.

Keywords

References

  1. Ji, K.H., and Kim, S.J., "Low Velocity Impact Behavior Analysis of 3D Woven Composite Plate Considering its Micro-structure," Composites Research, Vol. 18, No. 4, 2005, pp. 44-51.
  2. Choi, Y.S., and Woo, K., "Crimp Angle Dependence of Effective Properties for 3-D Weave Composite," Composites Research, Vol. 29, No. 1, 2016, pp. 33-39. https://doi.org/10.7234/COMPOSRES.2016.29.1.033
  3. Lee, W.O., Um, M.K., Byun, J.H., and Cao, J., "Characterization of In-plane Shear Behaviors of Woven Fabrics by Bias-extension and Trellis-frame Tests," Proceeding of the 8th Korea-Japan Joint Symposium on Composites Research, Vol. 23, No. 5, 2010, pp. 8-14.
  4. Chun, H.J., and Cho, H.S., "New Constitutive Models for Tensile/Compressive Nonlinear Elastic Behaviors of Composite Materials with Fiber Waviness," Composites Research, Vol. 12, No. 1, 1999, pp. 59-67.
  5. Woo, K.S., "Effect of Fiber Tow Waviness and Harness Number on Mechanical Properties of Plain Woven Textile Composites," Composites Research, Vol. 8, No. 3, 1995, pp. 60-73.
  6. Donadon, M.V., Falzon, B.G., Iannucci, L., and Hodgkinson, J.M., "A 3-D Micromechanical Model for Predicting the Elastic Behaviour of Woven laminates," Composites Science and Technology, Vol. 67, Iss. 11-12, 2007, pp. 2467-2477. https://doi.org/10.1016/j.compscitech.2006.12.019
  7. Scida, D., Aboura, Z., Benzeggagh, M. L., and Bocherens, E., "Prediction of the Elastic Behaviour of Hybrid and Non-hybrid Woven Composites," Composites Science and Technology, Vol. 57, Iss. 12, 1998, pp. 1727-1740. https://doi.org/10.1016/S0266-3538(97)00105-X