DOI QR코드

DOI QR Code

Optimization of Soldering Process of Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In Alloys for Solar Combiner Junction Box Module

태양광 접속함 정션박스 모듈 적용을 위한 Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In 솔더링의 공정최적화

  • Lee, Byung-Suk (Welding and Joining R&D Group, Korea Institute of Industrial Technology (KITECH)) ;
  • Oh, Chul-Min (Eletronic Convergence Material & Device Research Center, Korea Electronics Technology Institute (KETI)) ;
  • Kwak, Hyun (MIRAE E & I) ;
  • Kim, Tae-Woo (MIRAE E & I) ;
  • Yun, Heui-Bog (MIRAE E & I) ;
  • Yoon, Jeong-Won (Welding and Joining R&D Group, Korea Institute of Industrial Technology (KITECH))
  • 이병석 (한국생산기술연구원 뿌리산업기술연구소 용접접합그룹) ;
  • 오철민 (전자부품연구원 융복합전자소재연구센터) ;
  • 곽현 (미래이앤아이) ;
  • 김태우 (미래이앤아이) ;
  • 윤희복 (미래이앤아이) ;
  • 윤정원 (한국생산기술연구원 뿌리산업기술연구소 용접접합그룹)
  • Received : 2018.06.11
  • Accepted : 2018.09.17
  • Published : 2018.09.30

Abstract

The soldering property of Pb-containing solder(Sn-Pb) and Pb-free solders(Sn-3.0Ag-0.5Cu and Sn-1.0Ag-0.7Cu-1.6Bi-0.2In) for solar combiner box module was compared. The solar combiner box module was composed of voltage and current detecting modules, diode modules, and other modules. In this study, solder paste printability, printing shape inspection, solder joint property, X-ray inspection, and shear force measurements were conducted. For optimization of Pb-free soldering process, step 1 and 2 were divided. In the step 1 process, the printability of Pb-containing and Pb-free solder alloys were estimated by using printing inspector. Then, the relationship between void percentages and shear force has been estimated. Overall, the property of Pb-containing solder was better than two Pb-free solders. In the step 2 process, the property of reflow soldering for the Pb-free solders was evaluated with different reflow peak temperatures. As the peak temperature of the reflow process gradually increased, the void percentage decreased by 2 to 4%, but the shear force did not significantly depend on the reflow peak temperature by a deviation of about 0.5 kgf. Among different surface finishes on PCB, ENIG surface finish was better than OSP and Pb-free solder surface finishes in terms of shear force. In the thermal shock reliability test of the solar combiner box module with a Pb-free solder and OSP surface finish, the change rate of electrical property of the module was almost unchanged within a 0.3% range and the module had a relatively good electrical property after 500 thermal shock cycles.

본 연구에서는 태양광 접속함 모듈 적용을 위한 유연 솔더(Sn-Pb) 및 무연 솔더(Sn-3.0Ag-0.5Cu 및 Sn-1.0Ag-0.7Cu-1.6Bi-0.2In)의 특성을 비교 평가하였다. 접속함 내에는 전압 및 전류 검출용 모듈, 고내압용 다이오드가 실장된 정류모듈 등 다양한 모듈이 내장되어있다. 본 연구에서는 솔더링특성, 인쇄성, 솔더형상 검사, X-ray를 이용한 솔더 내 void 검사 및 접합강도를 측정하였고, 무연 솔더 합금의 공정최적화는 step 1과 step 2로 구분하여 검토를 실시하였다. Step 1은 유연 솔더와 무연 솔더 페이스트 인쇄 검사 시험을 1차와 2차로 나누어 실험을 진행하였고 printability는 void 함량 및 접합강도의 상관관계로 검토하였다. 전체적으로 유연 솔더의 특성은 무연 솔더에 비하여 상대적으로 우수하였다. Step 2는 리플로우 공정의 최고점 온도 변화에 따른 접합부 특성 변화를 관찰하였다. 리플로우 최고 온도가 증가할수록 접합부 내의 void 함량이 2~4% 정도 감소하였고, 접합강도는 약 0.5 kgf 범위내에서 큰 차이 없이 나타났다. 기판 표면처리종류에 있어서는 ENIG 표면처리가 OSP 및 Pb-free 솔더 표면처리보다 우수한 접합강도를 나타내었다. 1종류의 무연솔더와 OSP 표면처리로 접합된 태양광 접속함 모듈의 500 싸이클 열충격 신뢰성시험 전후에 전기적 특성변화는 0.3% 내의 범위에서 안정적으로 작동함을 확인하였다.

Keywords

References

  1. F. Cucchiella, I. D'Adamo, and M. Gastaldi, "Economic Analysis of a Photovoltaic System : A Resource for Residential Households", Energies, 10(6), 814 (2017). https://doi.org/10.3390/en10060814
  2. S. Pacca, D. Sivaraman, and G. A. Keoleian, "Parameters Affecting the Life Cycle Performance of PV Technologies and Systems", Energy Policy, 34(6), 3316 (2007).
  3. J. Yuventi, "A Method for Evaluating the Influence of Wiring on the Performance of Components in a Photovoltaic System Design", Solar Energy, 86(10), 2996 (2012). https://doi.org/10.1016/j.solener.2012.07.007
  4. K. M. Park, S. B. Bang, D. O. Kim, K. Y. Lee, J. H. Kim, and J. Y. Park, "A Study on the Electrical Fire Hazard by the Tracking of Solar Connection Box (in Korean)", The Korean Institute of Electrical Engineers, 1531 (2015).
  5. F. H. Abanda, J. H. M. Tah, and D. Duce, "PV-TONS : A Photovoltaic Technology Ontology System for the Design of PV-Systems", Engineering Applications of Artificial Intelligence, 26(4), 1399 (2013). https://doi.org/10.1016/j.engappai.2012.10.010
  6. M. Abtew, and G. Selvaduray, "Lead-free Solders in Microelectronics", Materials Science and Engineering, 27(5-6), 95 (2000). https://doi.org/10.1016/S0927-796X(00)00010-3
  7. S. K. Kang, and A. K. Sarkhel, "Lead (Pb)-free Solders for Electronic Packaging", Journal of Electronic Materials, 23(8), 701 (1994). https://doi.org/10.1007/BF02651362
  8. J. Shen, and Y. C. Chan, "Research Advances in Nano-composite Solders", Microelectronics Reliability, 49(3), 223 (2009). https://doi.org/10.1016/j.microrel.2008.10.004
  9. S. H. Jin, N. H. Kang, K. Cho, C. W. Lee, and W. S. Hong, "Behavior of Vibration Fracture for Sn-Ag-Cu-X Solders by Soldering (in Korean)", Journal of Welding and Joining, 30(2), 65 (2012). https://doi.org/10.5781/KWJS.2012.30.2.169
  10. W. S. Seo, B. W. Min, J. H. Kim, N. K. Lee and J. B. Kim, "An Analysis of Screen Printing using Solder Paste (in Korean)", J. Microelectron. Packag. Soc., 17(1), 47 (2010).
  11. D. Bernard, and K. Bryant, "Does PCB pad finish affect voiding levels in lead-free assemblies?", Proc. SMTA International conference, Surface Mount Technology Association (SMTA) (2004).
  12. M. N. Islam, Y. C. Chan, M. J. Rizvi, and W. Jillek, "Investigations of Interfacial Reactions of Sn-Zn Based and Sn-Ag-Cu Lead-free Solder Alloys as Replacement for Sn-Pb Solder", Journal of Alloys Compounds, 400(1-2), 136 (2005). https://doi.org/10.1016/j.jallcom.2005.03.053
  13. J. W. Yoon, S. W. Kim, and S. B. Jung, "IMC Growth and Shear Strength of Sn-Ag-Bi-In/Au/Ni/Cu BGA Joints during Aging", Materials transactions, 45(3), 727 (2004). https://doi.org/10.2320/matertrans.45.727
  14. K. Zeng, and K. N. Tu, "Six Cases of Reliability Study of Pbfree Solder Joints in Electronic Packaging Technology", Materials Science and Engineering R, 38(2), 55 (2002). https://doi.org/10.1016/S0927-796X(02)00007-4
  15. F. P. McCluskey, M. Dash, Z. Wang, and D. Huff, "Reliability of High Temperature Solder Alternatives", Microelectronics Reliability, 46(9-11), 1910 (2006). https://doi.org/10.1016/j.microrel.2006.07.090
  16. M. H Jeong, J. M. Kim, S. H. Yoo, C. W. Lee, and Y. B. Park, "Effect of PCB Surface Finishes on Intermetallic Compound Growth Kinetics of Sn-3.0Ag-0.5Cu Solder Bump (in Korean)", J. Microelectron. Packag. Soc., 17(1), 81 (2010).