DOI QR코드

DOI QR Code

Fabrication Process and Power Generation Characteristics of Thermoelectric Thin Film Devices for Micro Energy Harvesting

미세 열에너지 하비스팅용 열전박막소자의 형성공정 및 발전특성

  • Oh, Tae Sung (Department of Materials Science and Engineering, Hongik University)
  • 오태성 (홍익대학교 공과대학 신소재공학과)
  • Received : 2018.09.27
  • Accepted : 2018.09.29
  • Published : 2018.09.30

Abstract

Thermoelectric thin film devices of the in-plane configuration consisting of 8 pairs of n-type $Bi_2Te_3$ and p-type $Sb_2Te_3$ legs were processed on Si submounts by electrodeposition. The thermoelectric generation characteristics of the thin film devices were investigated with respect to the apparent temperature difference ${\Delta}T$ caused by LED lighting as well as the change of the leg thickness. When ${\Delta}T$ was 7.4 K, the open circuit voltages of 6.1 mV, 7.4 mV, and 11.8 mV and the maximum output powers of 6.6 nW, 12.8 nW, and 41.9 nW were measured for the devices with the thermoelectric legs of which thickness were $2.5{\mu}m$, $5{\mu}m$, and $10{\mu}m$, respectively.

두께 $2.5{\sim}10{\mu}m$인 n형 $Bi_2Te_3$와 p형 $Sb_2Te_3$ 레그 8쌍으로 구성되어 있는 in-plane형 열전박막소자를 전기도금법으로 Si submounts에 형성하고, LED 칩의 구동에 의해 발생하는 겉보기 온도차 ${\Delta}T$와 레그 두께에 따른 발전특성을 분석하였다. LED 방출열에 의해 인가된 ${\Delta}T$가 7.4K일 때 각기 두께 $2.5{\mu}m$, $5{\mu}m$$10{\mu}m$의 p-n 레그들로 구성된 열전박막소자는 6.1 mV, 7.4 mV 및 11.8 mV의 open circuit 전압을 나타내었으며, 6.6 nW, 12.8 nW 및 41.9 nW의 최대 출력전력을 나타내었다.

Keywords

References

  1. J. H. Kim, W. J. Kim, and T. S. Oh, "Thermoelectric Thin Film Devices for Energy Harvesting with the Heat Dissipated from High-power Light-emitting Diodes", J. Electron. Mater., 45(7), 3410 (2016).
  2. R. J. M. Vullers, R. van Schaijk, I. Doms, C. Van Hoof, and R. Mertens, "Micropower Energy Harvesting", Solid-State Electron., 53, 684 (2009).
  3. T. Huesgen, P. Woias, and N. Kockmann, "Design and Fabrication of MEMS Thermoelectric Generators with High Temperature Efficiency", Sens. Actuators A, 145-146, 423 (2008). https://doi.org/10.1016/j.sna.2007.11.032
  4. W. Wang, V. Cionca, N. Wang, M. Hayes, B. O'Flynn, and C. O'Mathuna, "Thermoelectric Energy Harvesting for Building Energy Management Wireless Sensor Networks", Inter. J. Distrib. Sens. Netw., 2013, 232438 (2013).
  5. W. Glatz, S. Muntwyler, and C. Hierold, "Optimization and Fabrication of Thick Flexible Polymer Based Micro Thermoelectric Generator", Sens. Actuators A, 132, 337 (2006).
  6. A. Sharma, J. H. Lee, K. H. Kim, and J. P. Jung, "Recent Advances in Thermoelectric Power Generation Technology", J. Microelectron. Packag. Soc., 24(1), 9 (2017). https://doi.org/10.6117/kmeps.2017.24.1.009
  7. J. P. Carmo, J. F. Ribeiro, M. F. Goncalves, and J. H. Correia, "Thermoelectric Generator and Solid-state Battery for Standalone Microsystems", J. Micromech. Microeng., 20, 1 (2010).
  8. G. J. Snyder, J. R. Lim, C.-K. Huang, and J.-P. Fleurial, "Thermoelectric Microdevice Fabricated by a MEMS-like Electrochemical Process", Nat. Mater., 2, 528 (2003).
  9. M. Y. Kim, and T. S. Oh, "Thermoelectric Power Generation Characteristics of a Thin-Film Device Consisting of Electrodeposited n-$Bi_2Te_3$ and p-$Sb_2Te_3$ Thin-film Legs", J. Electron. Mater., 42, 2752 (2013).
  10. J. H. Ji, G. H. Jo, J. G. Ha, S. M. Koo, M. Kamiko, J. H. Hong, and J. H. Koh, "Recycled Thermal Energy from High Power Light Emitting Diode Light Source", J. Nanosci. Nanotechnol., 18, 6029 (2018).
  11. J. Duga, M. Knap, T. C. Lui, "Energy Harvested LED Luminary", Proc. 20th International Workshop on Thermal Investigations of ICs and Systems, London, IEEE (2014).
  12. M. Y. Kim, T. Jeong, J. S. Ha, and T. S. Oh, "The Effects of Si Submounts Containing Cu Thermal Vias on the Heat-Dissipation Characteristics of a High-power Light-emitting Diode Package", J. Electron. Mater., 43, 630 (2014).
  13. O. B. Shchekin, J. E. Epler, T. A. Trottier, T. Margalith, D. A. Steigerwald, M. O. Holcomb, P. S. Martin, and M. R. Krames, "High Performance Thin-film Flip-chip InGaNGaN Light-emitting Diodes", Appl. Phys. Lett., 89, 071109 (2006).
  14. T. Jeong, K. H. Kim, S. J. Lee, S. H. Lee, S. R. Jeon, S. H. Lim, J. H. Baek, and J. K. Lee, "Aluminum Nitride Ceramic Substrates-Bonded Vertical Light-emitting Diode", IEEE Photon. Technol. Lett., 21, 890 (2009).
  15. T. Jeong, K. H. Kim, H. H. Lee, S. J. Lee, S. H. Lee, J. H. Baek, and J. K. Lee, "Enhanced Light Output Power of GaNbased Vertical Light-emitting Diodes by Using Highly Reflective ITO-Ag-Pt Reflectors", IEEE Photon. Technol. Lett., 20, 1932 (2008). https://doi.org/10.1109/LPT.2008.2005421
  16. M. Y. Kim, and T. S. Oh, "Thermoelectric Thin Film Device of Cross-plane Configuration Processed by Electrodeposition and Flip-chip Bonding", Mater. Trans., 53(12), 2160 (2012). https://doi.org/10.2320/matertrans.M2012265
  17. J. M. Bae, M. Y. Kim, and T. S. Oh, "Fabrication Process and Sensing Characteristics of the In-plane Thermoelectric Sensor Consisting of the Evaporated p-type Sb-Te and n-type Bi-Te Thin Films", J. Microelectron. Packag. Soc., 19(1), 33 (2012). https://doi.org/10.6117/kmeps.2012.19.1.033
  18. Y. N. Choi, M. Y. Kim, and T. S. Oh, "Thermoelectric Properties of Bi-Te Thin Films Processed by Coevaporation", J. Microelectron. Packag. Soc., 17(4), 89 (2010).
  19. J. M. Bae, M. Y. Kim, and T. S. Oh, "Effects of Evaporation Processes and a Reduction Annealing on Thermoelectric Properties of the Sb-Te Thin Films", J. Microelectron. Packag. Soc., 17(4), 77 (2010).
  20. R. Rostek, J. Kottmeier, M. Kratschmer, G. Blackburn, F. Goldschmidtboing, M. Kroner, and P. Woias, "Thermoelectric Characterization of Electrochemically Deposited $Bi_2Te_3$ Films Accounting for the Presence of Conductive Seed Layers", J. Electrochem. Soc., 160, D408 (2013).
  21. H. P. Nguyen, J. Su, Z. Wang, R. J. M. Vullers, P. M. Vereecken, and J. Fransaer, "Measurement of Seebeck Coefficient of Electroplated Thermoelectric Films in Presence of a Seed Layer", J. Mater. Res., 26, 1953 (2011).
  22. J. P. Schaffer, A. Saxena, S. D. Antolovich, T. H. Sanders Jr., and S. B. Warner, The Science and Design of Engineering Materials, Inter. Ed., Irwin, Chicago, 577 (1995).
  23. L. M. Goncalves, C. Couto, P. Alpuim, A. G. Rolo, F. Volkein, and J. H. Correia, "Optimization of Thermoelectric Properties on $Bi_2Te_3$ Thin Films Deposited by Thermal Coevaporation", Thin Solid Films, 518, 2816 (2010). https://doi.org/10.1016/j.tsf.2009.08.038
  24. N. W. Park, W. Y. Lee, J. E. Hong, T. H. Park, S. G. Yoon, H. Im, H. S. Kim, and S. K. Lee, "Effect of Grain Size on Thermal Transport in Post-annealed Antimony Telluride Thin Films", Nanoscale Res. Lett., 10, 20 (2015).
  25. G. H. Dong, Y. J. Zhu, and L. D. Chen, "$Sb_2Te_3$ Nanostructures with Various Morphologies: Rapid Microwave Solvothermal Synthesis and Seebeck Coefficients", J. Mater. Chem., 20, 1976 (2010).
  26. W. Glatz, E. Schwyter, L. Durrer, and C. Hierold, "$Bi_2Te_3$-Based Flexible Micro Thermoelectric Generator With Optimized Design", J. Microelectromech. Syst., 18, 763 (2009). https://doi.org/10.1109/JMEMS.2009.2021104

Cited by

  1. PDMS 충진법을 이용하여 형성한 유연열전모듈의 발전특성과 굽힘특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.119
  2. PDMS로 충진된 신축열전모듈의 신축특성과 발전특성 vol.26, pp.4, 2018, https://doi.org/10.6117/kmeps.2019.26.4.149