Elliptic Linear Weingarten Surfaces

YOUNG HO KIM
Department of Mathematics, Kyungpook National University, Daegu 41566, Korea
e-mail: yhkim@knu.ac.kr

Abstract. We establish some characterizations of isoparametric surfaces in the three-dimensional Euclidean space, which are associated with the Laplacian operator defined by the so-called II-metric on surfaces with non-degenerate second fundamental form and the elliptic linear Weingarten metric on surfaces in the three-dimensional Euclidean space. We also study a Ricci soliton associated with the elliptic linear Weingarten metric.

1. Introduction

Surfaces in the Euclidean 3-space E^3 with constant mean curvature H which are often called H-surfaces and those with constant Gauss curvature K are called K-surfaces.

As Bonnet pointed out that K-surfaces and H-surfaces are big classes hard to classify, the so-called Weingarten condition is considered. We call a surface S in E^3 linear Weingarten if a linear combination of the mean curvature H and the Gauss curvature K is a constant, i.e.,

$$2aH + bK = c$$

for some real numbers a, b and c which are not all zero. If $a^2 + bc > 0$, the local graph of the surface satisfies the elliptic condition for differential equation relative to the principal curvatures [3, 4, 5].

On the other hand, the eigenvalue problem of an isometric immersion $x : M \to E^m$ of a Riemannian manifold M into a Euclidean space E^m is a nice tool to determine a geometric character for a sphere, i.e., if $\Delta x = kx$ is satisfied for a non-zero real number k, then M is part of a sphere [6]. Generalizing this notion, B.-Y. Chen defined the notion of order and type for the immersion of M into E^m. By definition, a finite-type immersion $x : M \to E^m$ of a submanifold M into a Euclidean space E^m means x is decomposed as a finite sum of the eigenvectors of
the Laplace operator Δ of M in the following

$$\Delta = \xi_0 + x_1 + \cdots + x_k,$$

where x_0 is a constant vector and x_1, \ldots, x_k are non-constant vectors satisfying $\Delta x_i = \lambda_i x_i$, $i = 1, 2, \ldots, k$. In particular, if all of $\lambda_1, \ldots, \lambda_k$ are different, it is called k-type or the submanifold M is said to be of k-type (cf. [1, 2]). Thus, if a submanifold M of E^m is 1-type, then its immersion x satisfies

$$\Delta x = kx + C$$

for some non-zero real number k and a constant vector C.

All surfaces under consideration is smooth and connected unless otherwise stated.

2. Preliminaries

Let S be an oriented surface in the 3-dimensional Euclidean space E^3 and $x : S \to E^3$ an isometric immersion. Then a unit vector field N called the Gauss map is well-defined on S.

We now assume that the immersion x satisfies (1.1) with $a^2 + bc > 0$. In this case, the surface S is called the elliptic linear Weingarten or shortly ELW surface. An ELW surface with $b = 0$ has constant mean curvature and that with $a = 0$ has constant Gauss curvature.

We put $E_1 = \langle x_s, x_s \rangle$, $F_1 = \langle x_s, x_t \rangle$, $G_1 = \langle x_t, x_t \rangle$, $E_2 = \langle x_{st}, N \rangle$, $F_2 = \langle x_{sv}, N \rangle$, and $G_2 = \langle x_{vv}, N \rangle$, where $x = x(s, t)$ for some coordinate system (s, t) of S. We then have the first and second fundamental forms, respectively,

$$I = E_1 ds^2 + 2F_1 ds dt + G_1 dt^2,$$

$$II = E_2 ds^2 + 2F_2 ds dt + G_2 dt^2.$$

Then, similarly to Lemma 1 in [3], we have

Lemma 2.1. Let $x : M \to E^3$ be an ELW immersion of a surface S in E^3 satisfying (1.1). Then,

$$(2.1) \quad \sigma = aI + bII$$

defines a Riemannian metric on M.

The Riemannian metric σ defined in Lemma 2.1 is called the ELW metric. Then we have the Gauss map η relative to the Riemannian metric σ, which is called the associated Gauss map.

Let (u, v) be the isothermal coordinates for σ. If we adopt the same notations by $E_1 = \langle x_u, x_u \rangle$, $F_1 = \langle x_u, x_v \rangle$, $G_1 = \langle x_v, x_v \rangle$, $E_2 = \langle x_{uu}, N \rangle$, $F_2 = \langle x_{uv}, N \rangle$, and $G_2 = \langle x_{vv}, N \rangle$ as above relative to the isothermal coordinates (u, v), we have

$$(2.2) \quad \sigma = (aE_1 + bE_2)du^2 + 2(aF_1 + bF_2)du dv + (aG_1 + bG_2)dv^2 = \lambda(du^2 + dv^2)$$
for some positive function λ. Without loss of generality, we may assume that

$$(2.3) \quad a^2 + bc = 1 \quad \text{and} \quad c \geq 0$$

by taking the appropriate direction for the Gauss map if necessary. In particular, (2.3) shows that if $b = 0$, then we may assume that $a = 1$. In this case, the ELW metric σ is nothing but the first fundamental form I. The ELW metric σ is said to be non-trivial if $b \neq 0$.

We then have the Laplacian Δ^σ with respect to the Riemannian metric σ by

$$\Delta^\sigma = -\frac{1}{\sqrt{\det \sigma}} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right)$$

$$= -\frac{1}{\lambda} \left(\frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2} \right).$$

If we compute λ^2 by using (2.2), we have

$$\lambda^2 = (aE_1 + bE_2)(aG_1 + bG_2) - (aF_1 + bF_2)^2,$$

from which,

$$\lambda^2 = \{a^2 + b(2aH + bK)\}(E_1G_1 - F_1^2).$$

Since $2aH + bK = c \geq 0$, we get

$$\lambda^2 = (a^2 + bc)(E_1G_1 - F_1^2) = (E_1G_1 - F_1^2),$$

or, equivalently

$$\lambda = \sqrt{E_1G_1 - F_1^2}.$$

Then, we get

Lemma 2.2. Let S be an ELW surface in E^3 satisfying (1.1) with $a^2 + bc = 1$. Then, the associated Gauss map η and the Gauss map N are the same.

From the first and second fundamental forms I and II, we have the shape operator A of the form

$$A = \begin{pmatrix} A_{11} & A_{12} \\ A_{21} & A_{22} \end{pmatrix}$$

where

$$A_{11} = \frac{1}{\lambda^2}(G_1E_2 - F_1F_2), \quad A_{12} = \frac{1}{\lambda^2}(G_1F_2 - F_1G_2),$$

$$A_{21} = \frac{1}{\lambda^2}(-E_2F_1 + E_1F_2), \quad A_{22} = \frac{1}{\lambda^2}(E_1G_2 - F_1F_2).$$
As is given in [3], we have

Theorem 2.3. Let \(x : S \to E^3 \) be an ELW immersion satisfying (1.1) with \(a^2 + bc = 1 \). Then, we have

\[
\begin{align*}
\Delta^\sigma x &= (c + bK)\eta, \\
\Delta^\sigma \eta &= 2(aK - cH)\eta.
\end{align*}
\]

(2.9)

3. Harmonic and Bi-harmonic ELW Surfaces

In this section, we characterize harmonic and bi-harmonic ELW surfaces in \(E^3 \) with respect to the ELW metric \(\sigma \).

Let \(S \) be an ELW surface with the metric \(\sigma \) defined by (2.1) satisfying \(a^2 + bc = 1 \).

Definition 3.1. An ELW surface \(S \) in \(E^3 \) is said to be \(\sigma \)-harmonic or ELW harmonic if its immersion \(x \) satisfies \(\Delta^\sigma x = 0 \). It is said to be \(\sigma \)-biharmonic or ELW biharmonic if its immersion \(x \) satisfies \((\Delta^\sigma)^2 x = 0 \).

First of all, we prove

Theorem 3.2. Let \(S \) be an ELW surface in \(E^3 \) with the ELW metric \(\sigma \). Then, \(S \) is \(\sigma \)-harmonic if and only if \(S \) is minimal or part of a plane.

Proof. Suppose that the ELW surface \(S \) is \(\sigma \)-harmonic. From (2.9), we have

\[
(3.1) \\
\begin{align*}
c + bK &= 0.
\end{align*}
\]

If \(b = 0 \), then \(c = 0 \). From the Weingarten condition (1.1) between the mean curvature \(H \) and Gauss curvature \(K \), we see that \(H = 0 \), i.e., \(S \) is minimal.

If \(b \neq 0 \), (3.1) gives \(K = -c/b \). Thus, the mean curvature is given by \(H = c/a \). Since \(H^2 - K \geq 0 \), \(c/b \geq 0 \) and hence the Gauss curvature \(K \leq 0 \). In this case, if \(c = 0 \), \(S \) is part of a plane. If \(c \neq 0 \), the Gauss curvature satisfies \(K < 0 \). Since the mean curvature \(H \) and the Gauss curvature \(K \) are constant, \(S \) is part of an isoparametric surface in \(E^3 \) which is one of a plane, a sphere or a circular cylinder. Thus, this case cannot occur.

Conversely, suppose that the ELW surface \(S \) is minimal. Then, (2.3) gives \(bK = c \). If \(b = 0 \), we get automatically \(c = 0 \) and (2.9) shows that \(S \) is \(\sigma \)-harmonic.

We now suppose \(b \neq 0 \). Then, the Gauss curvature \(K \) is given by \(K = c/b \). In this case, if \(c = 0 \), \(S \) is totally geodesic. In case of \(c > 0 \), there exists no possible isoparametric surface with \(H = 0 \) and \(K \neq 0 \) in \(E^3 \).

If \(S \) is totally geodesic, (1.1) shows that the ELW surface \(S \) is \(\sigma \)-harmonic. \(\Box \)

We now compute \((\Delta^\sigma)^2 x\). From (2.9), we get

\[
(3.2) \\
(\Delta^\sigma)^2 x &= \frac{-1}{\lambda} \{ b(K_{uu} + K_{vv})\eta + 2bK_u\eta_u + (c + bK)\eta_{uu} \} \\
&+ 2bK_v\eta_v + (c + bK)\eta_{vv} \}.
\]
Using Lemma 2.2 with (2.6)-(2.8) and (2.9), we obtain

\[(\Delta^\sigma)^2 x = -\frac{1}{\lambda}\left\{b\Delta^\sigma K + 2(c + bK)(aK - cH)\right\}x + \frac{2b}{\lambda}(K_u A_{11} + K_v A_{12})x_u + \frac{2b}{\lambda}(K_u A_{21} + K_v A_{22})x_v\].

We now prove

Theorem 3.3. Let \(S \) be an ELW surface in \(E^3 \) with the ELW metric \(\sigma \). Then, if \(S \) is \(\sigma \)-biharmonic, then \(S \) is part of either a minimal surface or an isoparametric surface in \(E^3 \), i.e., \(S \) is part of a sphere, a plane or a circular cylinder. Conversely, if we take appropriate real numbers \(a, b \) and \(c \), then a sphere, a plane or a minimal surface is \(\sigma \)-biharmonic.

Proof. Suppose that the ELW surface \(S \) is \(\sigma \)-biharmonic. Then, from (3.3), we get

\[(3.4) \quad b\Delta^\sigma K + 2(c + bK)(aK - cH) = 0,\]

\[(3.5) \quad b \left(\begin{array}{cc} A_{11} & A_{12} \\ A_{21} & A_{22} \end{array} \right) \left(\begin{array}{c} K_u \\ K_v \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right).\]

Case 1: \(b \neq 0 \).

Suppose the open subset \(M_0 = \{ p \in S | K(p) \neq 0 \} \) of \(S \) is not empty. Let \(U \) be a component of \(M_0 \). It follows from (3.5) that the Gauss curvature \(K \) is non-zero constant on \(U \). Together with (3.4), the mean curvature \(H \) is constant. Thus, \(U \) is contained in a plane, a circular cylinder or a sphere. Since the Gauss curvature \(K \) is non-zero, \(U \) is part of a sphere. By continuity, \(U \) is the whole surface \(S \).

Suppose \(K \) is vanishing, i.e., \(S \) is flat. By the condition of (1.1), we get \(2aH = c \). Since \(a^2 + bc = 1 \), \(a \) cannot be zero.

If \(c = 0 \), \(H = 0 \) and thus the surface \(S \) is part of a plane.

In case of \(c \neq 0 \), the only possible case for the surface \(S \) as an isoparametric surface in \(E^3 \) is contained in a circular cylinder.

Case 2: \(b = 0 \).

(3.3) implies

\[(3.6) \quad c(aK - cH) = 0.\]

If \(c = 0 \), the ELW condition gives the mean curvature \(H \) is vanishing.

Suppose \(c \neq 0 \). Then, \(H = c/2 \) and \(K = c^2/2 \). However, this case cannot occur because \(H^2 - K \geq 0 \).
Conversely, it is easy to show that if we take appropriate real numbers a, b and c, a minimal surface, a plane or a sphere is σ-biharmonic. \hfill \qed

4. Surfaces with II-metrics

Let S be a surface in E^3 with non-degenerate second fundamental form via an isometric immersion $x : S \to E^3$.

Let $\tilde{\nabla}$ be the Levi-Civita connection on E^3 and ∇ the induced connection on S. Then, the Gauss and Codazzi equations of S in E^3 are respectively given by

\begin{align}
\tilde{\nabla} X Y &= \nabla X Y + \langle AX, Y \rangle N, \\
(\nabla X) A Y &= (\nabla Y) A X,
\end{align}

where A is the shape operator of S and X, Y and Z are the vector fields tangent to S.

Since A is non-degenerate, we can choose a coordinate patch $x(u, v)$ on a neighborhood U around p such that x_u, x_v are in the principal directions. Then, we have

$$A = \begin{pmatrix} \kappa_1 & 0 \\ 0 & \kappa_2 \end{pmatrix}$$

with respect to the coordinate frame $\{x_u, x_v\}$ so that the mean curvature and the Gaussian curvature are respectively given by $H = (\kappa_1 + \kappa_2)/2$ and $K = \kappa_1 \kappa_2$. Define a symmetric tensor h by

$$(4.3) \quad h(X, Y) = \langle AX, Y \rangle$$

for tangent vector fields X and Y to S.

Since h is non-degenerate, h is regarded as a non-degenerate metric on M, which is called the II-metric with representation given by

$$(4.4) \quad h = \begin{pmatrix} \kappa_1 E_1 & 0 \\ 0 & \kappa_2 G_1 \end{pmatrix}.$$

On the other hand, it is easy to derive

$$(4.5) \quad \nabla_{x_u} x_u = \frac{(E_1)_s}{2E_1} x_u - \frac{(E_1)_t}{2G_1} x_v,$$

$$(4.6) \quad \nabla_{x_u} x_v = \frac{(E_1)_t}{2E_1} x_u + \frac{(G_1)_s}{2G_1} x_v,$$

$$(4.7) \quad \nabla_{x_v} x_v = -\frac{(G_1)_s}{2E_1} x_u + \frac{(G_1)_t}{2G_1} x_v.$$
Without loss of generality, we may regard as \(\kappa_1 > 0 \). We put
\[
(4.8) \quad h_{11} = \kappa_1 E_1 = a^2, h_{12} = h_{21} = 0, h_{22} = \kappa_2 G_1 = \varepsilon b^2
\]
for some positive functions \(a \) and \(b \), where \(\varepsilon = \pm 1 \) depending upon the signature of \(h_{22} \). Then, we have the equations of Gauss
\[
(4.9) \quad x_{uu} = \nabla_{x_u} x_{u u} = \frac{(E_1)_u}{2E_1} x_u - \frac{(E_1)_v}{2G_1} x_v + a^2 N,
\]
\[
(4.10) \quad x_{uv} = \nabla_{x_u} x_{v u} = \frac{(E_1)_v}{2E_1} x_u + \frac{(G_1)_u}{2G_1} x_v,
\]
\[
(4.11) \quad x_{vv} = \nabla_{x_v} x_{v v} = -\frac{(G_1)_u}{2E_1} x_u + \frac{(G_1)_v}{2G_1} x_v + \varepsilon b^2 N.
\]

We then define the \(II \)-Laplace operator \(\Delta^{II} \) with respect to the metric \(h \) by
\[
(4.12) \quad \Delta^{II} = -\frac{1}{\sqrt{|\det h|}} \{ \frac{\partial}{\partial u} (\sqrt{|\det h|} \frac{1}{a^2} \frac{\partial}{\partial u}) + \frac{\partial}{\partial v} (\varepsilon \sqrt{|\det h|} \frac{1}{b^2} \frac{\partial}{\partial v}) \}
\]
\[= -\frac{1}{ab} \left(\frac{b}{a} \frac{\partial}{\partial u} \right) + \varepsilon \frac{1}{b} \frac{\partial}{\partial v} \left(\frac{a}{b} \frac{\partial}{\partial v} \right). \]

If we put \(f = b/a \), then (4.12) can be written as
\[
(4.13) \quad \Delta^{II} = -\frac{1}{ab} \left(f_u \partial / \partial u + f \partial^2 / \partial u^2 + \varepsilon (1/f)_v \partial / \partial v + \varepsilon (1/f) \partial^2 / \partial v^2 \right).
\]

Using (4.9), (4.10) and (4.11), we have

Lemma 4.1. Let \(M \) be a surface of \(S^3(1) \) with non-degenerate second fundamental form. Then, we have
\[
(4.14) \quad \Delta^{II} x = -\frac{1}{ab} \left((f_u + f (E_1)_v) \frac{(E_1)_u}{2E_1} - \varepsilon (G_1)_u \right) x_u + \left(-\frac{f (E_1)_v}{2G_1} + \varepsilon (G_1)_v \right) x_v + 2ab N.
\]

We then have immediately from Lemma 4.1

Proposition 4.2. There do not exist \(II \)-harmonic surfaces of \(S^3(1) \) with non-degenerate second fundamental form satisfying \(\Delta^{II} x = 0 \).

Suppose that the surface \(S \) satisfies \(\Delta^{II} x = k x + C \) for some real number \(k \neq 0 \) and a constant vector \(C \), that is, \(S \) is of 1-type with respect to \(II \)-metric. From equation (4.14), we see that \(k x + C \) is in the normal direction, i.e., \(k x + C = \rho N \) for some function \(\rho \). It follows that
\[
\langle k x + C, N \rangle = -2,
\]
from which, we get
\[x + \frac{1}{k} C = \frac{\rho}{k} N \]
and \(\rho \) is a constant. Thus, the surface \(S \) is part of a sphere.

Conversely, suppose that the surface \(S \) is part of sphere with radius \(r \). Without loss of generality, we may assume that the center of \(S \) is the origin. It is straightforward to compute
\[\Delta \Pi x = -\frac{2}{r} x. \]
Therefore, \(S \) is of 1-type with respect to \(\Pi \)-metric. Therefore, we have

Theorem 4.3. Let \(S \) be a surface of \(E^3 \) with non-degenerate fundamental form. Then, \(S \) is of 1-type with respect to \(\Pi \)-metric if and only if \(S \) is part of a sphere.

5. Compact ELW Surfaces

In this section, we discuss about the geometric meaning of the Gauss curvature \(K^\sigma \) on the ELW surface \(M \) defined by the Riemannian metric \(\sigma \). We call \(K^\sigma \) the ELW-Gauss curvature. Let \(\nabla^\sigma \) be the Levi-Civita connection compatible with the Riemannian metric \(\sigma \) on \(M \).

By straightforward computation, we have the following

Lemma 5.1. Let \(M \) be an ELW surface with the metric \(\sigma \). Then, the Christoffel symbols \(\bar{\Gamma}^h_{ji} \) are given by

\[
\bar{\Gamma}^1_{11} = \bar{\Gamma}^2_{12} = \bar{\Gamma}^2_{21} = -\bar{\Gamma}^1_{22} = \frac{\lambda}{2\lambda},
\]

\[
-\bar{\Gamma}^1_{11} = \bar{\Gamma}^1_{12} = \bar{\Gamma}^1_{21} = \bar{\Gamma}^2_{22} = \frac{\lambda}{2\lambda}.
\]

Making use of Lemma 5.1, we have the ELW-Gauss curvature \(K^\sigma \)

\[
K^\sigma = \frac{R^\sigma(x_u, x_v, x_u, x_v)}{\sigma(x_u, x_u)\sigma(x_v, x_v) - \sigma(x_u, x_v)^2}
\]

\[
= -\frac{1}{\lambda} \left\{ \left(\frac{\lambda}{2\lambda} \right)_u + \left(\frac{\lambda}{2\lambda} \right)_v \right\}
\]

\[
= -\frac{1}{2\lambda} \{ (\ln \lambda)_{uu} + (\ln \lambda)_{vv} \}
\]

\[
= \frac{1}{2} \Delta^\sigma (\ln \lambda),
\]

where \(R^\sigma \) is the curvature tensor defined by \(\nabla^\sigma \) and we have put

\[
R^\sigma(X, Y, Z, W) = \sigma(\nabla^\sigma_X \nabla^\sigma_Y Z - \nabla^\sigma_Y \nabla^\sigma_X Z - \nabla^\sigma_{[X,Y]} Z, W)
\]
Elliptic Linear Weingarten Surfaces

for tangent vector field X, Y, Z, W on M.

We now consider the non-trivial ELW metric σ with a constant λ, i.e., S satisfies $a^2 + bc = 1$ with $b \neq 0$.

Theorem 5.2. Let S be a non-trivial ELW surface of E^3 with the ELW metric σ. Then, S is flat if and only if λ is constant.

Proof. Suppose that the surface S is non-trivial ELW and flat. Then,

$$E_2G_2 - F_2^2 = 0.$$

Since S is ELW, the mean curvature H is constant and thus S is part of a plane or a circular cylinder.

If S is part of plane, the metric σ is nothing but $\sigma = aI$ and $\lambda = aE_1$. We may take an isothermal coordinate system so that $E_1 = G_1$ are constant and hence λ is constant.

If S is part of a circular cylinder, the second fundamental form is given by

$$II = \begin{pmatrix} 0 & 0 \\ 0 & kG_1 \end{pmatrix}$$

for some non-zero constant k. Thus, we have $\lambda = aE_1 = (a+bk)G_1$ and $F_1 = 0$, from which we get $k = c/a$ and $\lambda = G_1/a$. In this case, we also can take an isothermal coordinate system so that E_1 and G_1 are constant and hence λ is constant.

Conversely, suppose that λ is constant. Then, we get

$$0 = a((E_1)_u G_1 + E_1(G_1)_u - 2F_1(F_1)_u),$$

$$0 = a((E_1)_v G_1 + E_1(G_1)_v - 2F_1(F_1)_v).$$

By using the relationships $aE_1 + bE_2 = \lambda$ and $aF_1 + bF_2 = 0$, we have

$$0 = -b((E_2)_u G_1 + E_1(G_2)_u - 2F_1(F_2)_u),$$

$$0 = -b((E_2)_v G_1 + E_1(G_2)_v - 2F_1(F_2)_v).$$

Multiplying the last two equation with a, we obtain

$$0 = -ab((E_2)_u G_1 + E_1(G_2)_u - 2F_1(F_2)_u),$$

$$= b^2((E_2)_u G_2 + E_2(G_2)_u - 2F_2(F_2)_u)$$

$$= b^2(E_2G_2 - F_2^2)_u,$$

$$0 = -ab((E_2)_v G_1 + E_1(G_2)_v - 2F_1(F_2)_v),$$

$$= b^2((E_2)_v G_2 + E_2(G_2)_v - 2F_2(F_2)_v)$$

$$= b^2(E_2G_2 - F_2^2)_v.$$
Therefore, the Gauss curvature K is constant. Since S is ELW, the mean curvature is also constant. Thus, S is part of a plane, a circular cylinder or a sphere.

Suppose that S is a part of a sphere. Then, S is totally umbilic and thus its second fundamental form II is given by

$$II = \begin{pmatrix} kE_1 & 0 \\ 0 & kG_1 \end{pmatrix}$$

for some non-zero constant k. Therefore, the function λ is represented by $\lambda = (a + bk)E_1 = (a + bk)G_1$ and $E_1 = G_1$ is constant. It follows that the Gauss curvature K vanishes, which is a contradiction.

Hence, the ELW surface S is flat.

Corollary 5.3. Let S be a non-trivial ELW surface with the ELW metric σ. If S is flat, the ELW-Gauss curvature K^σ of S vanishes.

6. Ricci Soliton ELW Surfaces

A complete Riemannian manifold (M, g) is a **Ricci soliton** if there exists a smooth function f on M satisfying

$$\text{Ric} + \nabla^2 f = \rho g$$

for some constant ρ, where ∇^2 is the Hessian defined by $(\nabla^2 f)(X, Y) = \nabla_X \nabla_Y f - (\nabla_X Y) f$ for vector fields X, Y on M. In this case, f is called a potential function of the Ricci soliton. The Ricci soliton is called **steady** if $\rho = 0$, **shrinking** if $\rho > 0$ and **expanding** if $\rho < 0$. If f is constant, (M, g) is Einstein. Thus, a Ricci soliton is a natural extension of Einstein manifolds.

Let (S, σ) be a Ricci soliton and ELW surface in E^3 with λ as a potential function, i.e., M satisfies

$$Ric^\sigma + \nabla^\sigma \nabla^\sigma \lambda = \rho I,$$

for a constant ρ, where Ric^σ is the Ricci tensor associated with the metric σ and ∇^σ is the Levi-Civita connection on S compatible with σ. The Ricci tensor is given by

$$Ric^\sigma(X, Y) = \sum_{i=1}^{2} R^\sigma(e_i, X, Y, e_i),$$

where e_1, e_2 are orthonormal frame along S with respect to the metric σ and R^σ is the curvature tensor defined by (5.4).

Let $x : S \to E^3$ be an immersion of a Ricci soliton and ELW surface S into E^3 with the isothermal coordinate system (u, v) with respect to σ. Then, we have a natural orthonormal frame $e_1 = x_u/\lambda$ and $e_2 = x_v/\lambda$. Using (6.2), we get

$$R^\sigma(x_u, x_v) = \frac{\lambda_u}{2\lambda} v + \frac{\lambda_v}{2\lambda} u.$$
Therefore, equation (6.1) gives
\[
\lambda \lambda_{uv} = \lambda_{u} \lambda_{v},
\]
from which, we get
\[
\lambda_{u} = \Phi(u) \lambda \quad \text{and} \quad \lambda_{v} = \Psi(v) \lambda
\]
for some non-zero functions $\Phi = \Phi(u)$ and $\Psi = \Psi(v)$. Therefore, we have
\[
\lambda_{u} \lambda_{v} = \lambda \lambda_{uv} = \lambda \lambda_{u}.
\]
Suppose $\lambda_{u} \neq 0$ on an open subset U on S. Then, $\lambda_{u} = \lambda_{v}$ and the functions Φ and Ψ are constant on U. Thus, on U, $\lambda_{u} = \lambda_{v} = \lambda C$ for some non-zero constant C. It follows $u = v$, which is a contradiction. Hence, $\lambda_{u} = 0$ on S. Similarly, we can have $\lambda_{v} = 0$ on S. Thus, λ is a constant. According to Corollary 5.3, S is flat and its ELW Gauss curvature K^{σ} is also vanishing.

Conversely, if the function λ is constant, it is trivial that S is a Ricci soliton satisfying (6.1).

Thus, we have

Theorem 6.1. Let S be an ELW surface in E^3 with the ELW metric σ. Then, S is a Ricci soliton with respect to σ with λ as a potential function if and only if S is part of a plane or a circular cylinder.

References

