DOI QR코드

DOI QR Code

Recent Developments in Piezoelectric Crystals

  • Zhang, Shujun (ISEM, Australian Institute of Innovative Materials, University of Wollongong) ;
  • Li, Fei (EMRL, Key Lab of the Ministry of Education and International Center for Dielectric Research, Xi'an Jiaotong University) ;
  • Yu, Fapeng (Institute of Crystal Materials, Shandong University) ;
  • Jiang, Xiaoning (Department of Mechanical and Aerospace Engineering, North Carolina State University) ;
  • Lee, Ho-Yong (Department of Materials Science and Engineering, Sunmoon University) ;
  • Luo, Jun (TRS Technologies, Inc., 2820 East College Avenue, State College) ;
  • Shrout, T.R. (Materials Research Institute, Pennsylvania State University)
  • Received : 2018.08.15
  • Accepted : 2018.08.27
  • Published : 2018.09.30

Abstract

Piezoelectric materials are essential parts of the electronics and electrical equipment used for consumer and industrial applications, such as ultrasonic piezoelectric transducers, sensors, actuators, transformers, and resonators. In this review, the development of piezoelectric materials and the figures of merit for various electromechanical applications are surveyed, focusing on piezoelectric crystals, i.e., the high-performance relaxor-$PbTiO_3$-based perovskite ferroelectric crystals and nonferroelectric high-temperature piezoelectric crystals. The uniqueness of these crystals is discussed with respect to different usages. Finally, the existing challenges and perspective for the piezoelectric crystals are discussed, with an emphasis on the temperature-dependent properties, from cryogenic temperatures up to the ultrahigh-temperature usage range.

Keywords

References

  1. S. Trolier-McKinstry, S. Zhang, A. J. Bell, and X. Tan, "High-Performance Piezoelectric Crystals, Ceramics, and Films," Annu. Rev. Mater. Res., 48 [1] 191-217 (2018). https://doi.org/10.1146/annurev-matsci-070616-124023
  2. B. Jaffe, R. Roth, and S. Marzullo, "Properties of Piezoelectric Ceramics in the Solid-Solution Series Lead Titanate-Lead Zirconate-Lead Oxide: Tin Oxide and Lead Titanate-Lead Hafnate," J. Res. Natl. Bur. Stand., 55 [5] 239-54 (1955). https://doi.org/10.6028/jres.055.028
  3. H. Jaffe and D. A. Berlincourt, "Piezoelectric Transducer Materials," Proc. IEEE., 53 [10] 1372-86 (1965). https://doi.org/10.1109/PROC.1965.4253
  4. S. E. Park and T. R. Shrout, "Relaxor Based Ferroelectric Single Crystals for Electro-Mechanical Actuators," Mater. Res. Innovations, 1 [1] 20-5 (1997). https://doi.org/10.1007/s100190050014
  5. S. Zhang and F. Li, "High Performance Ferroelectric Relaxor-$PbTiO_3$ Single Crystals: Status and Perspective," J. Appl. Phys., 111 [3] 031301 (2012). https://doi.org/10.1063/1.3679521
  6. E. Sun and W. Cao, "Relaxor-Based Ferroelectric Single Crystals: Growth, Domain Engineering, Characterization and Applications," Prog. Mater. Sci., 65 124-210 (2014). https://doi.org/10.1016/j.pmatsci.2014.03.006
  7. S. Zhang, F. Yu, and D. J. Green, "Piezoelectric Materials for High Temperature Sensors," J. Am. Ceram. Soc., 94 [10] 3153-70 (2011). https://doi.org/10.1111/j.1551-2916.2011.04792.x
  8. N. Setter, D. Damjanovic, L. Eng, G. Fox, S. Gevorgian, S. Hong, A. Kingon, H. Kohlstedt, N. Y. Park, G. B. Stephenson, I. Stolitchnov, A. K. Taganstev, D. V. Taylorc, T. Yamada, and S. Streiffer, "Ferroelectric Thin Films: Review of Materials, Properties, and Applications," J. Appl. Phys., 100 [5] 051606 (2006). https://doi.org/10.1063/1.2336999
  9. D. Damjanovic, "Ferroelectric, Dielectric and Piezoelectric Properties of Ferroelectric Thin Films and Ceramics," Rep. Prog. Phys., 61 [9] 1267-324 (1998). https://doi.org/10.1088/0034-4885/61/9/002
  10. S. Trolier-McKinstry and P. Muralt, "Thin Film Piezoelectrics for MEMS," J. Electroceram., 12 [1-2] 7-17 (2004). https://doi.org/10.1023/B:JECR.0000033998.72845.51
  11. G. L. Messing, S. Trolier-McKinstry, E. M. Sabolsky, C. Duran, S. Kwon, B. Brahmaroutu, P. Park, H. Yilmaz, P. W. Rehrig, K. B. Eitel, E. Suvaci, M. Seabaugh, and K. S. Oh, "Templated Grain Growth of Textured Piezoelectric Ceramics," Crit. Rev. Solid State Mater. Sci., 29 [2] 45-96 (2004). https://doi.org/10.1080/10408430490490905
  12. G. L. Messing, S. Poterala, Y. Chang, T. Frueh, E. R. Kupp, B. H. Watson, R. L. Walton, M. J. Brova, A.-K. Hofer, R. Bermejo, and R. J. Meyer, "Texture-Engineered Ceramics -Property Enhancements through Crystallographic Tailoring," J. Mater. Res., 32 [17] 3219-41 (2017). https://doi.org/10.1557/jmr.2017.207
  13. A. J. Bell, "Multilayer Ceramic Processing," pp. 241-71 in Ferroelectric Ceramics. Ed. by N. Setter and E. L. Colla, Springer, London, 1993.
  14. Q. Li, L. Chen, M. R. Gadinski, S. Zhang, G. Zhang, H. U. Li, E. Iagodkine, A. Haque, L.-Q. Chen, T. N. Jackson, and Q. Wang, "Flexible High-Temperature Dielectric Materials from Polymer Nanocomposites," Nature, 523 [7562] 576-79 (2015). https://doi.org/10.1038/nature14647
  15. Q. M. Zhang, V. Bharti, and X. Zhao, "Giant Electrostriction and Relaxor Ferroelectric Behavior in Electron-Irradiated Poly(Vinylidene Fluoride-Trifluoroethylene) Copolymer," Science, 280 [5372] 2101-5 (1998). https://doi.org/10.1126/science.280.5372.2101
  16. R. E. Newnham, D. P. Skinner, and L. E. Cross, "Connectivity and Piezoelectric-Pyroelectric Composites," Mater. Res. Bull., 13 [5] 525-36 (1978). https://doi.org/10.1016/0025-5408(78)90161-7
  17. R. E. Newnham, "Composite Electroceramics," Ferroelectrics, 68 [1] 1-32 (1986). https://doi.org/10.1080/00150198608238734
  18. W. A. Smith and B. A. Auld, "Modeling 1-3 Composite Piezoelectrics: Thickness-Mode Oscillations," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 38 [1] 40-7 (1991). https://doi.org/10.1109/58.67833
  19. S. Zhang, F. Li, J. Luo, R. Sahul, and T. R. Shrout, "Relaxor-$PbTiO_3$ Single Crystals for Various Applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 [8] 1572-80 (2013). https://doi.org/10.1109/TUFFC.2013.2737
  20. S. Zhang, F. Li, X. Jiang, J. Kim, J. Luo, and X. Geng, "Advantages and Challenges of Relaxor-$PbTiO_3$ Ferroelectric Crystals for Electroacoustic Transducers- A Review," Prog. Mater. Sci., 68 1-66 (2015). https://doi.org/10.1016/j.pmatsci.2014.10.002
  21. C. H. Sherman, "Underwater Sound - A Review I. Underwater Sound Transducers," IEEE Trans. Sonics Ultrason., 22 [5] 281-90 (1975). https://doi.org/10.1109/T-SU.1975.30812
  22. X. Jiang, K. Kim, S. Zhang, J. Johnson, and G. Salazar, "High-Temperature Piezoelectric Sensing," Sensors, 14 [1] 144-69 (2013). https://doi.org/10.3390/s140100144
  23. S. J. Zhang, F. Li, and F. P. Yu, "Piezoelectric Materials for Cryogenic and High-Temperature Applications," pp. 59-93 in Structural Health Monitoring in Aerospace Structures, Ed. F. G. Yuan, Woodhead Publishing Limited, Cambridge, 2016.
  24. F. Li, S. Zhang, Z. Li, and Z. Xu, "Recent Development on Relaxor-$PbTiO_3$ Single Crystals: The Origin of High Piezoelectric Response," Prog. Phys., 32 178-98 (2012).
  25. L. Cross and R. Newnham, History of Ferroelectrics, Ceramics and Civilation: High Technology Ceramics-Past, Present and Future; Vol. 3, pp. 289-305, The American Ceramic Society, 1987.
  26. J. Valasek, "Properties of Rochelle Salt Related to the Piezo-Electric Effect," Phys. Rev., 20 [6] 639-64 (1922). https://doi.org/10.1103/PhysRev.20.639
  27. D. Berlincourt and H. Jaffe, "Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate," Phys. Rev., 111 [1] 143-48 (1958). https://doi.org/10.1103/PhysRev.111.143
  28. H. Jaffe, "Piezoelectric Ceramics," J. Am. Ceram. Soc., 41 [11] 494-98 (1958). https://doi.org/10.1111/j.1151-2916.1958.tb12903.x
  29. G. H. Haertling, "Ferroelectric Ceramics: History and Technology," J. Am. Ceram. Soc., 82 [4] 797-818 (1999). https://doi.org/10.1111/j.1151-2916.1999.tb01840.x
  30. K. H. Hardtl, "Electrical and Mechanical Losses in Ferroelectric Ceramics," Ceram. Int., 8 [4] 121-27 (1982). https://doi.org/10.1016/0272-8842(82)90001-3
  31. J. A. Gallego-Juarez, "Piezoelectric Ceramics and Ultrasonic Transducers," J. Phys. E: Sci. Instrum., 22 [10] 804-16 (1989). https://doi.org/10.1088/0022-3735/22/10/001
  32. E. C. Subbarao, "A Family of Ferroelectric Bismuth Compounds," J. Phys. Chem. Solids, 23 [6] 665-76 (1962). https://doi.org/10.1016/0022-3697(62)90526-7
  33. R. E. Newnham, R. W. Wolfe, and J. F. Dorrian, "Structural Basis of Ferroelectricity in the Bismuth Titanate Family," Mater. Res. Bull., 6 [10] 1029-39 (1971). https://doi.org/10.1016/0025-5408(71)90082-1
  34. H. Yan, H. Zhang, Z. Zhang, R. Ubic, and M. J. Reece, "B-Site Donor and Acceptor Doped Aurivillius Phase $Bi_3NbTiO_9$ Ceramics," J. Eur. Ceram. Soc., 26 [13] 2785-92 (2006). https://doi.org/10.1016/j.jeurceramsoc.2005.07.056
  35. S. Zhang, N. Kim, T. R. Shrout, M. Kimura, and A. Ando, "High Temperature Properties of Manganese Modified $CaBi_4Ti_4O_{15}$ Ferroelectric Ceramics," Solid State Commun., 140 [3-4] 154-58 (2006). https://doi.org/10.1016/j.ssc.2006.08.007
  36. H. Hao, H. Liu, and S. Ouyang, "Structure and Ferroelectric Property of Nb-Doped $SrBi_4Ti_4O_{15}$ Ceramics," J. Electroceram., 22 [4] 357-62 (2007). https://doi.org/10.1007/s10832-007-9180-9
  37. C.-M. Wang and J.-F. Wang, "Aurivillius Phase Potassium Bismuth Titanate: $K_{0.5}Bi_{4.5}Ti_4O_{15}$," J. Am. Ceram. Soc., 91 [3] 918-23 (2008). https://doi.org/10.1111/j.1551-2916.2007.02211.x
  38. A. Moure, A. Castro, and L. Pardo, "Aurivillius-Type Ceramics, a Class of High Temperature Piezoelectric Materials: Drawbacks, Advantages and Trends," Prog. Solid State Chem., 37 [1] 15-39 (2009). https://doi.org/10.1016/j.progsolidstchem.2009.06.001
  39. A. Moure, "Review and Perspectives of Aurivillius Structures as a Lead-Free Piezoelectric System," Appl. Sci., 8 [1] 918-23 (2018). https://doi.org/10.3390/app8060918
  40. Z.-G. Gai, J.-F. Wang, M.-L. Zhao, C.-M. Wang, G.-Z. Zang, B.-Q. Ming, and P. Qi, "High Temperature $(NaBi)_{0.48-0.04}Bi_2Nb_2O_9}$-Based Piezoelectric Ceramics," Appl. Phys. Lett., 89 [1] 012907 (2006). https://doi.org/10.1063/1.2216355
  41. C.-M. Wang, J.-F. Wang, S. Zhang, and T. R. Shrout, "Piezoelectric and Electromechanical Properties of Ultrahigh Temperature $CaBi_2Nb_2O_9$ Ceramics," Phys. Status Solidi RRL, 3 [2-3] 49-51 (2009). https://doi.org/10.1002/pssr.200802259
  42. T. Yamada, N. Niizeki, and H. Toyoda, "Piezoelectric and Elastic Properties of Lithium Niobate Single Crystals," Jpn. J. Appl. Phys., 6 [2] 151-55 (1967). https://doi.org/10.1143/JJAP.6.151
  43. P. Ueberschlag, "PVDF Piezoelectric Polymer," Sens. Rev., 21 [2] 118-26 (2001). https://doi.org/10.1108/02602280110388315
  44. F. S. Foster, K. A. Harasiewicz, and M. D. Sherar, "A History of Medical and Biological Imaging with Polyvinylidene Fluoride (PVDF) Transducers," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 47 [6] 1363-71 (2000). https://doi.org/10.1109/58.883525
  45. L. F. Brown, "Ferroelectric Polymers: Current and Future Ultrasound Applications," 539-50 (1992). Proceeding Paper?
  46. R. E. Newnham, L. J. Bowen, K. A. Klicker, and L. E. Cross, "Composite Piezoelectric Transducers," Mater. Des., 2 [2] 93-106 (1980). https://doi.org/10.1016/0261-3069(80)90019-9
  47. A. Bandyopadhyay, R. K. Panda, T. F. McNulty, F. Mohammadi, S. C. Danforth, and A. Safari, "Piezoelectric Ceramics and Composites via Rapid Prototyping Techniques," Rapid Prototyping J., 4 [1] 37-49 (1998). https://doi.org/10.1108/13552549810200285
  48. L. E. Cross, "Relaxor Ferroelectrics," Ferroelectrics, 76 [1] 241-67 (1987). https://doi.org/10.1080/00150198708016945
  49. F. Li, S. Zhang, D. Damjanovic, L. Q. Chen, and T. R. Shrout, "Local Structural Heterogeneity and Electromechanical Responses of Ferroelectrics: Learning from Relaxor Ferroelectrics," Adv. Funct. Mater., 28 1801504 (2018). https://doi.org/10.1002/adfm.201801504
  50. D. Viehland, S. J. Jang, L. E. Cross, and M. Wuttig, "Freezing of the Polarization Fluctuations in Lead Magnesium Niobate Relaxors," J. Appl. Phys., 68 [6] 2916-21 (1990). https://doi.org/10.1063/1.346425
  51. A. A. Bokov, B. J. Rodriguez, X. Zhao, J.-H. Ko, S. Jesse, X. Long, W. Qu, T. H. Kim, J. D. Budai, A. N. Morozovska, S. Kojima, X. Tan, S. V. Kalinin, and Z.-G. Ye, "Compositional Disorder, Polar Nanoregions and Dipole Dynamics in $Pb(Mg_{1/3}Nb_{2/3})O_3$-Based Relaxor Ferroelectrics," Z. Kristallogr., 226 [2] 99-107 (2011). https://doi.org/10.1524/zkri.2011.1299
  52. G. Xu, Z. Zhong, Y. Bing, Z. G. Ye, and G. Shirane, "Electric-Field-Induced Redistribution of Polar Nano-Regions in a Relaxor Ferroelectric," Nat. Mater., 5 [2] 134-40 (2006). https://doi.org/10.1038/nmat1560
  53. M. E. Manley, D. L. Abernathy, R. Sahul, D. E. Parshall, J. W. Lynn, A. D. Christianson, P. J. Stonaha, E. D. Specht, and J. D. Budai, "Giant Electromechanical Coupling of Relaxor Ferroelectrics Controlled by Polar Nanoregion Vibrations," Sci. Adv., 2 [9] e1501814 (2016). https://doi.org/10.1126/sciadv.1501814
  54. M. A. Carpenter, J. F. Bryson, G. Catalan, S. J. Zhang, and N. J. Donnelly, "Elastic and Anelastic Relaxations in the Relaxor Ferroelectric $Pb(Mg_{1/3}Nb_{2/3})O_3$: II. Strain-Order Parameter Coupling and Dynamic Softening Mechanisms," J. Phys. Condens. Matter., 24 [4] 045902 (2012). https://doi.org/10.1088/0953-8984/24/4/045902
  55. J. Macutkevic, J. Banys, A. Bussmann-Holder, and A. R. Bishop, "Origin of Polar Nanoregions in Relaxor Ferroelectrics: Nonlinearity, Discrete Breather Formation, and Charge Transfer," Phys. Rev., B, 83 [18] 184301 (2011). https://doi.org/10.1103/PhysRevB.83.184301
  56. S.-E. Park and T. R. Shrout, "Ultrahigh Strain and Piezoelectric Behavior in Relaxor Based Ferroelectric Single Crystals," J. Appl. Phys., 82 [4] 1804-11 (1997). https://doi.org/10.1063/1.365983
  57. X. Zhao, J. Wang, Z. Peng, K. H. Chew, H. L. W. Chan, C. L. Choy, and H. Luo, "Electric Field Effect on Polarization and Depolarization Behavior of the <001>-Oriented Relaxor-Based $0.7Pb(Mg_{1/3}Nb_{2/3})O_3$-0.3$PbTiO_3$ Single Crystal," Phys. B, 339 [2-3] 68-73 (2003). https://doi.org/10.1016/S0921-4526(03)00493-9
  58. F. Li, S. Zhang, T. Yang, Z. Xu, N. Zhang, G. Liu, J. Wang, J. Wang, Z. Cheng, Z.-G. Ye, J. Luo, T. R. Shrout, and L.-Q. Chen, "The Origin of Ultrahigh Piezoelectricity in Relaxor-Ferroelectric Solid Solution Crystals," Nat. Commun., 7 13807 (2016). https://doi.org/10.1038/ncomms13807
  59. F. Li, S. Zhang, Z. Xu, and L.-Q. Chen, "The Contributions of Polar Nanoregions to the Dielectric and Piezoelectric Responses in Domain-Engineered Relaxor-$PbTiO_3$ Crystals," Adv. Funct. Mater., 27 [18] 1700310 (2017). https://doi.org/10.1002/adfm.201700310
  60. F. Li, D. Lin, Z. Chen, Z. Cheng, J. Wang, C. Li, Z. Xu, Q. Huang, X. Liao, L.-Q. Chen, T. R. Shrout, and S. Zhang, "Ultrahigh Piezoelectricity in Ferroelectric Ceramics by Design," Nat. Mater., 17 [4] 349-54 (2018). https://doi.org/10.1038/s41563-018-0034-4
  61. A. Biancoli, C. M. Fancher, J. L. Jones, and D. Damjanovic, "Breaking of Macroscopic Centric Symmetry in Paraelectric Phases of Ferroelectric Materials and Implications for Flexoelectricity," Nat. Mater., 14 [2] 224-29 (2015). https://doi.org/10.1038/nmat4139
  62. D. Damjanovic, "Piezoelectric Properties of Perovskite Ferroelectrics: Unsolved Problems and Future Research," Annales de Chimie Science des Materiaux, 26 [1] 99-106 (2001). https://doi.org/10.1016/S0151-9107(01)90020-0
  63. D. Damjanovic, "Contributions to the Piezoelectric Effect in Ferroelectric Single Crystals and Ceramics," J. Am. Ceram. Soc., 88 [10] 2663-76 (2005). https://doi.org/10.1111/j.1551-2916.2005.00671.x
  64. M. Ahart, A. Asthagiri, Z.-G. Ye, P. Dera, H.-K. Mao, R. E. Cohen, and R. J. Hemley, "Brillouin Scattering and Molecular Dynamics Study of the Elastic Properties of $Pb(Mg_{1/3}Nb_{2/3})O_3$," Phys. Rev. B, 75 [14] 144410 (2007). https://doi.org/10.1103/PhysRevB.75.144410
  65. H. Y. Guo, C. Lei, and Z.-G. Ye, "Re-Entrant Type Relaxor Behavior in (1-x)$BaTiO_{3-x}BiScO_3$ Solid Solution," Appl. Phys. Lett., 92 [17] 172901 (2008). https://doi.org/10.1063/1.2913208
  66. M. Saidul Islam, S. Tsukada, W. Chen, Z.-G. Ye, and S. Kojima, "Role of Dynamic Polar Nanoregions in Heterovalent Perovskite Relaxor: Inelastic Light Scattering Study of Ferroelectric Ti Rich $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$," J. Appl. Phys., 112 [11] 114106 (2012). https://doi.org/10.1063/1.4768278
  67. A. A. Bokov and Z.-G. Ye. "Reentrant Phenomena in Relaxors," pp. 729-64 in Nanoscale Ferroelectrics and Multiferroics: Key Processing and Characterization Issues, and Nanoscale Effects, Volume I & II, Ed. by M. Alguero, J. M. Gregg, L. Mitoseriu, John Wiley & Sons, Chichester, 2016.
  68. M. J. Cabral, S. Zhang, E. C. Dickey, and J. M. LeBeau, "Gradient Chemical Order in the Relaxor $Pb(Mg_{1/3}Nb_{2/3})O_3$," Appl. Phys. Lett., 112 [8] 082901 (2018). https://doi.org/10.1063/1.5016561
  69. T. R. Shrout and J. Fielding, "Relaxor Ferroelectric Materials," pp. 711-20 in Proceedings of IEEE Symposium on Ultrasonics, 1990.
  70. Y. H. Bing and Z. G. Ye, "Effects of Chemical Compositions on the Growth of Relaxor Ferroelectric $Pb(Sc_{1/2}Nb_{1/2})_{1-x}Ti_xO_3$ Single Crystals," J. Cryst. Growth, 250 [1-2] 118-25 (2003). https://doi.org/10.1016/S0022-0248(02)02237-6
  71. S. Zhang, L. Laurent, S. Rhee, C. A. Randall, and T. R. Shrout, "Shear-Mode Piezoelectric Properties of $Pb(Yb_{1/2}Nb_{1/2})O_3-PbTiO_3$ Single Crystals," Appl. Phys. Lett., 81 [5] 892-94 (2002). https://doi.org/10.1063/1.1497435
  72. N. Yasuda, H. Ohwa, M. Kume, Y. Hosono, Y. Yamashita, S. Ishino, H. Terauchi, M. Iwata, and Y. Ishibashi, "Crystal Growth and Dielectric Properties of Solid Solutions of $Pb(Yb_{1/2}Nb_{1/2})O_3-PbTiO_3$ with a High Curie Temperature near a Morphotropic Phase Boundary," Jpn. J. Appl. Phys., 40 [Part 1, No. 9B] 5664-67 (2001). https://doi.org/10.1143/JJAP.40.5664
  73. N. Yasuda, M. Sakaguchi, Y. Itoh, H. Ohwa, Y. Yamashita, M. Iwata, and Y. Ishibashi, "Effect of Electric Fields on Domain Structure and Dielectric Properties of $Pb(In_{1/2}Nb_{1/2})O_3-PbTiO_3$ near Morphotropic Phase Boundary," Jpn. J. Appl. Phys., 42 [Part 1, No. 9B] 6205-8 (2003). https://doi.org/10.1143/JJAP.42.6205
  74. Y. Guo, H. Luo, T. He, and Z. Yin, "Peculiar Properties of a High Curie Temperature $Pb(In_{1/2}Nb_{1/2})O_3-PbTiO_3$ Single Crystal Grown by the Modified Bridgman Technique," Solid State Commun., 123 [9] 417-20 (2002). https://doi.org/10.1016/S0038-1098(02)00311-3
  75. S. Zhang, C. A. Randall, and T. R. Shrout, "High Curie Temperature Piezocrystals in the $BiScO_3-PbTiO_3$ Perovskite System," Appl. Phys. Lett., 83 [15] 3150-52 (2003). https://doi.org/10.1063/1.1619207
  76. S. Zhang, L. Lebrun, S. Rhee, R. E. Eitel, C. A. Randall, and T. R. Shrout, "Crystal Growth and Characterization of New High Curie Temperature (1-x)$BiScO_3-xPbTiO_3$ Single Crystals," J. Cryst. Growth, 236 [1-3] 210-16 (2002). https://doi.org/10.1016/S0022-0248(01)02093-0
  77. Y. Hosono, Y. Yamashita, H. Sakamoto, and N. Ichinose, "Growth of Single Crystals of High-Curie-Temperature $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ternary Systems near Morphotropic Phase Boundary," Jpn. J. Appl. Phys., 42 [Part 1, No. 9A] 5681-86 (2003). https://doi.org/10.1143/JJAP.42.5681
  78. N. Yasuda, T. Fuwa, H. Ohwa, Y. Tachi, Y. Yamashita, K. Fujita, M. Iwata, H. Terauchi, and Y. Ishibashi, "Hierarchical Domain Structures in Relaxor $24Pb(In_{1/2}Nb_{1/2})O_3-46Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3$ near a Morphotropic Phase Boundary Composition Grown by Bridgman Method," Jpn. J. Appl. Phys., 50 [9S2] 09NC1 (2011).
  79. S. Zhang, J. Luo, W. Hackenberger, and T. R. Shrout, "Characterization of $Pb(In_{1⁄2}Nb_{1⁄2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ferroelectric Crystal with Enhanced Phase Transition Temperatures," J. Appl. Phys., 104 [6] 064106 (2008). https://doi.org/10.1063/1.2978333
  80. X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, "Complete Set of Material Constants of $Pb(In_{1⁄2}Nb_{1⁄2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Single Crystal with Morphotropic Phase Boundary Composition," J. Appl. Phys., 106 [7] 074112 (2009). https://doi.org/10.1063/1.3243169
  81. X. Liu, S. Zhang, J. Luo, T. R. Shrout, and W. Cao, "A Complete Set of Material Properties of Single Domain 0.26$Pb(In_{1⁄2}Nb_{1⁄2})O_3$-0.46$Pb(Mg_{1/3}Nb_{2/3})O_3$-0.28$PbTiO_3$ Single Crystals," Appl. Phys. Lett., 96 [1] 012907 (2010). https://doi.org/10.1063/1.3275803
  82. S. Zhang, J. Luo, W. Hackenberger, N. P. Sherlock, R. J. Meyer, Jr., and T. R. Shrout, "Electromechanical Characterization of [Formula: See Text] Crystals as a Function of Crystallographic Orientation and Temperature," J. Appl. Phys., 105 [10] 104506 (2009). https://doi.org/10.1063/1.3131622
  83. X. Li and H. Luo, "The Growth and Properties of Relaxor-Based Ferroelectric Single Crystals," J. Am. Ceram. Soc., 93 [10] 2915-28 (2010). https://doi.org/10.1111/j.1551-2916.2010.04107.x
  84. Y. Zhang, D. A. Liu, Q. Zhang, W. Wang, B. Ren, X. Zhao, and H. Luo, "Complete Set of Material Constants of <011>-Poled Rhombohedral Single-Crystal $0.25Pb(In_{1/2}Nb_{1/2})O_3-0.47Pb(Mg_{1/3}Nb_{2/3})O_3$-0.28$PbTiO_3$," J. Electron. Mater., 40 [1] 92-6 (2010). https://doi.org/10.1007/s11664-010-1390-2
  85. Y. Wang, Z. Wang, W. Ge, C. Luo, J. Li, D. Viehland, J. Chen, and H. Luo, "Temperature-Induced and Electric-Field-Induced Phase Transitions in Rhombohedral $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$ Ternary Single Crystals," Phys. Rev. B, 90 [13] 134107 (2014). https://doi.org/10.1103/PhysRevB.90.134107
  86. N. Hidayah, N. Yasuda, H. Ohwa, Y. Tachi, Y. Yamashita, and M. Iwata, "Poling and Depoling Effects on Dielectric Properties and Domain Structures in Relaxor 24$Pb(In_{1/2}Nb_{1/2})O_3-46Pb(Mg_{1/3}Nb_{2/3})O_3-30PbTiO_3$ near a Morphotropic Phase Boundary Composition," Jpn. J. Appl. Phys., 51 [9S1] 09LC6 (2012).
  87. J. Luo and S. Zhang, "Advances in the Growth and Characterization of Relaxor-PT-Based Ferroelectric Single Crystals," Crystals, 4 [3] 306-30 (2014). https://doi.org/10.3390/cryst4030306
  88. D. Carka, J. Gallagher, and C. Lynch, "Phase Energy Determined from Stress and Electric-Field-Induced Phase Transformations in [011]C Cut 0.24PIN-PMN-PT Single Crystals," Crystals, 4 [3] 377-89 (2014). https://doi.org/10.3390/cryst4030377
  89. W. He, Q. Li, Q. Yan, N. Luo, Y. Zhang, X. Chu, and D. Shen, "Temperature-Dependent Phase Transition in Orthorhombic [011]c $Pb(Mg_{1/3}Nb_{2/3})O_3$-0.35$PbTiO_3$ Single Crystal," Crystals, 4 [3] 262-72 (2014). https://doi.org/10.3390/cryst4030262
  90. F. Li, S. Zhang, D. Lin, J. Luo, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Electromechanical Properties of $Pb(In_{12}Nb_{12})O_3-Pb(Mg_{13}Nb_{23})O_3-PbTiO_3$ Single Crystals," J. Appl. Phys., 109 [1] 014108 (2011). https://doi.org/10.1063/1.3530617
  91. J. Tian and P. Han, "Growth and Characterization on PMN-PT-Based Single Crystals," Crystals, 4 [3] 331-41 (2014). https://doi.org/10.3390/cryst4030331
  92. X. Jiang, J. Kim, and K. Kim, "Relaxor-PT Single Crystal Piezoelectric Sensors," Crystals, 4 [3] 351-76 (2014). https://doi.org/10.3390/cryst4030351
  93. S. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, "Characterization of High $T_C $$Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ Single Crystals Fabricated by Solid State Crystal Growth," Appl. Phys. Lett., 90 [23] 232911 (2007). https://doi.org/10.1063/1.2746055
  94. S. Zhang, S.-M. Lee, D.-H. Kim, H.-Y. Lee, and T. R. Shrout, "Electromechanical Properties of PMN-PZT Piezoelectric Single Crystals Near Morphotropic Phase Boundary Compositions," J. Am. Ceram. Soc., 90 [12] 3859-62 (2007).
  95. A. Amin, H.-Y. Lee, and B. Kelly, "High Transition Temperature Lead Magnesium Niobate-Lead Zirconate Titanate Single Crystals," Appl. Phys. Lett., 90 [24] 242912 (2007). https://doi.org/10.1063/1.2748857
  96. T. Richter, C. Schuh, E. Suvaci, and R. Moos, "Single Crystal Growth in PMN-PT and PMN-PZT," J. Mater. Sci., 44 [7] 1757-63 (2009). https://doi.org/10.1007/s10853-009-3286-1
  97. Z. Xia and Q. Li, "Growth and Characterization of $Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3-PbZrO_3$ Single Crystals with High Rhombohedral/Tetragonal Phase Transition Temperature," Solid State Commun., 145 [1-2] 38-42 (2008). https://doi.org/10.1016/j.ssc.2007.10.004
  98. S. Zhang, S. M. Lee, D. H. Kim, H. Y. Lee, and T. R. Shrout, "Characterization of Mn-Modified $Pb(Mg_{1/3}Nb_{2/3})O_3-PbZrO_3-PbTiO_3$ Single Crystals for High Power Broad Bandwidth Transducers," Appl Phys Lett., 93 [12] 122908 (2008). https://doi.org/10.1063/1.2992081
  99. A. J. Bell, "A Classical Mechanics Model for the Interpretation of Piezoelectric Property Data," J. Appl. Phys., 118 [22] 224103 (2015). https://doi.org/10.1063/1.4937135
  100. A. J. Bell, "Phenomenologically Derived Electric Field-Temperature Phase Diagrams and Piezoelectric Coefficients for Single Crystal Barium Titanate under Fields along Different Axes," J. Appl. Phys., 89 [7] 3907-14 (2001). https://doi.org/10.1063/1.1352682
  101. A. J. Bell, "Factors Influencing the Piezoelectric Behaviour of PZT and other "Morphotropic Phase Boundary" Ferroelectrics," J. Mater. Sci., 41 [1] 13-25 (2006). https://doi.org/10.1007/s10853-005-5913-9
  102. T. R. Shrout and S. J. Zhang, "Lead-Free Piezoelectric Ceramics: Alternatives for PZT?," J. Electroceram., 19 [1] 113-26 (2007). https://doi.org/10.1007/s10832-007-9047-0
  103. Y. Dai, X. Zhang, and G. Zhou, "Phase Transitional Behavior in $K_{0.5}Na_{0.5}NbO_3-LiTaO_3$ Ceramics," Appl. Phys. Lett., 90 [26] 262903 (2007). https://doi.org/10.1063/1.2751607
  104. W. Liu and X. Ren, "Large Piezoelectric Effect in Pb-Free Ceramics," Phys. Rev. Lett., 103 [25] 257602 (2009). https://doi.org/10.1103/PhysRevLett.103.257602
  105. M. Acosta, N. Novak, V. Rojas, S. Patel, R. Vaish, J. Koruza, G. A. Rossetti Jr., and J. Rodel1, "$BaTiO_3$-Based Piezoelectrics: Fundamentals, Current Status, and Perspectives," Appl. Phys. Rev., 4 [4] 041305 (2017). https://doi.org/10.1063/1.4990046
  106. H. Fritze, "High-Temperature Piezoelectric Crystals and Devices," J. Electroceram., 26 [1-4] 122-61 (2011). https://doi.org/10.1007/s10832-011-9639-6
  107. W. M. Kriven, J. W. Palko, S. Sinogeikin, J. D. Bass, A. Sayir, G. Brunauer, H. Boysen, F. Frey, and J. Schneider, "High Temperature Single Crystal Properties of Mullite," J. Eur. Ceram. Soc., 19 [13-14] 2529-41 (1999). https://doi.org/10.1016/S0955-2219(99)00124-7
  108. B. R. Tittmann and M. Aslan, "Ultrasonic Sensors for High Temperature Applications," Jpn. J. Appl. Phys., 38 [Part 1, No. 5B] 3011-13 (1999). https://doi.org/10.1143/JJAP.38.3011
  109. S. Zhang, Y. Zheng, H. Kong, J. Xin, E. Frantz, and T. R. Shrout, "Characterization of High Temperature Piezoelectric Crystals with an Ordered Langasite Structure," J. Appl. Phys., 105 [11] 114107 (2009). https://doi.org/10.1063/1.3142429
  110. H. Fritze, H. L. Tuller, G. Borchardt, and T. Fukuda, "High-Temperature Properties of Langasite," pp. 65-70 in Proceedings of Material Research Symposium, Vol. 604, 2000.
  111. H. Takeda, M. Hagiwara, H. Noguchi, T. Hoshina, T. Takahashi, N. Kodama, and T. Tsurumi, "Calcium Aluminate Silicate $Ca_2Al_2SiO_7$ Single Crystal Applicable to Piezoelectric Sensors at High Temperature," Appl. Phys. Lett., 102 [24] 242907 (2013). https://doi.org/10.1063/1.4811163
  112. F. Yu, S. Hou, X. Zhao, and S. Zhang, "High-Temperature Piezoelectric Crystals $ReCa_4O(BO_3)_3$: a Review," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61 [8] 1344-56 (2014). https://doi.org/10.1109/TUFFC.2014.3042
  113. T. Kim, J. Kim, R. Dalmau, R. Schlesser, E. Preble, and X. Jiang, "High-Temperature Electromechanical Characterization of AlN Single Crystals," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 62 [10] 1880-87 (2015). https://doi.org/10.1109/TUFFC.2015.007252
  114. P. Krempl, G. Schleinzer, and W. Wallnofer, "Gallium Phosphate, $GaPO_4$: a New Piezoelectric Crystal Material for High-Temperature Sensorics," Sens. Actuators, A, 61 [1-3] 361-63 (1997). https://doi.org/10.1016/S0924-4247(97)80289-0
  115. I. Mateescu, F. Krispel, S. Georgescu, K. Scott, and E. Borca, "Comparative Study of the Mass-Loading Effect on Electrical Parameters of Gallium Phosphate, Quartz and Langasite Resonators," pp. 690-94 in Proceedings of IEEE International Frequency Control Symposium, 2007.
  116. C. Caliendo and F. Castro, "Quasi-Linear Polarized Modes in Y-Rotated Piezoelectric $GaPO_4$ Plates," Crystals, 4 [3] 228-40 (2014). https://doi.org/10.3390/cryst4030228
  117. P. Armand, A. Lignie, M. Beaurain, and P. Papet, "Flux-Grown Piezoelectric Materials: Application to ${\alpha}$-Quartz Analogues," Crystals, 4 [2] 168-89 (2014). https://doi.org/10.3390/cryst4020168
  118. P. Armand, M. Beaurain, B. Ruffle, B. Menaert, D. Balitsky, S. Clement, and P. Papet, "Characterizations of Piezoelectric $GaPO_4$ Single Crystals Grown by the Flux Method," J. Cryst. Growth, 310 [7-9] 1455-59 (2008). https://doi.org/10.1016/j.jcrysgro.2007.11.049
  119. M. Beaurain, P. Armand, D. Balitsky, P. Papet, and J. Detaint, "Physical Characterizations of ${\alpha}-GaPO_4$ Single Crystals Grown by the Flux Method," pp. 1077-81 in Proceedings of IEEE International Frequency Control Symposium, 2007.
  120. W. Soluch, R. Ksiezopolski, W. Piekarczyk, M. Berkowski, M. A. Goodberlet, and J. F. Vetelino, "Elastic, Piezoelectric, and Dielectric Properties of the $BaLaGa_3O_7$ Crystal," J. Appl. Phys., 58 [6] 2285-87 (1985). https://doi.org/10.1063/1.335947
  121. C. Shen, S. Zhang, W. Cao, H. Cong, H. Yu, J. Wang, and H. Zhang, "Thermal and Electromechanical Properties of Melilite-Type Piezoelectric Single Crystals," J. Appl. Phys., 117 [6] 064106 (2015). https://doi.org/10.1063/1.4908113
  122. C. Shen, H. Zhang, Y. Zhang, H. Xu, H. Yu, J. Wang, and S. Zhang, "Orientation and Temperature Dependence of Piezoelectric Properties for Sillenite-Type $Bi_{12}TiO_{20}$ and $Bi_{12}SiO_{20}$ Single Crystals," Crystals, 4 [2] 141-51 (2014). https://doi.org/10.3390/cryst4020141
  123. H. Yamauchi, "Surface-Acoustic-Wave Characteristics on Fresnoite ($Ba_2Si_2TiO_8$) Single Crystal," J. Appl. Phys., 49 [12] 6162-64 (1978). https://doi.org/10.1063/1.324540
  124. C. Shen, H. Zhang, H. Cong, H. Yu, J. Wang, and S. Zhang, "Investigations on the Thermal and Piezoelectric Properties of Fresnoite $Ba_2TiSi_2O_8$ Single Crystals," J. Appl. Phys., 116 [4] 044106 (2014). https://doi.org/10.1063/1.4891827
  125. M. Kimura, K. Doi, S. Nanamatsu, and T. Kawamura, "A New Piezoelectric Crystal: $Ba_2Ge_2TiO_8$," Appl. Phys. Lett., 23 [10] 531-32 (1973). https://doi.org/10.1063/1.1654737
  126. H. Takeda, T. Kuze, T. Nishida, K. Uchiyama, and T. Shiosaki, "Growth and Piezoelectric Properties of Al-Substituted Langasite-Type $La_3Nb_{0.5}Ga_{5.5}O_{14}$ Crystals," Mater. Res. Bull., 43 [7] 1731-36 (2008). https://doi.org/10.1016/j.materresbull.2007.07.029
  127. Y. V. Pisarevsky, P. Senushencov, P. Popov, and B. Mill, "New Strong Piezoelectric $La_3Ga_{5.5}Nb_{0.5}O_{14}$ with Temperature Compensation Cuts," pp. 653-56 in Proceedings of IEEE International Frequency Control Symposium, 1995.
  128. T. Fukuda, P. Takeda, K. Shimamura, H. Kawanaka, M. Kumatoriya, S. Murakami, J. Sato, and M. Sato, "Growth of New Langasite Single Crystals for Piezoelectric Applications," pp. 315-19 in Proceedings of the IEEE International Symposium on Applications of Ferroelectrics, 1998.
  129. J. Bohm, R. B. Heimann, M. Hengst, R. Roewer, and J. Schindler, "Czochralski Growth and Characterization of Piezoelectric Single Crystals with Langasite Structure: $La_3Ga_5SiO_{14}$ (LGS), $La_3Ga_{5.5}Nb_{0.5}O_{14}$ (LGN), and $La_3Ga_{5.5}Ta_{0.5}O_{14}$ (LGT): Part I," J. Cryst. Growth, 204 [1-2] 128-36 (1999). https://doi.org/10.1016/S0022-0248(99)00186-4
  130. B. H. T. Chai, A. N. P. Bustamante, and M. C. Chou, "A new class of ordered langasite structure compounds," pp. 163-68 in Proceeding of IEEE/EIA International Frequency Control Symposium, 2000.
  131. B. V. Mill and Y. V. Pisarevsky, "Langasite-type materials: from discovery to present state," pp. 133-44 in Proceeding of IEEE/EIA International Frequency Control Symposium, 2000.
  132. H. Fritze, M. Schulz, H. Seh, and H. Tuller, "Sensor Application-Related Defect Chemistry and Electromechanical Properties of Langasite," Solid State Ionics, 177 [26-32] 2313-16 (2006). https://doi.org/10.1016/j.ssi.2006.02.008
  133. F. Yu, X. Zhao, L. Pan, F. Li, D. Yuan, and S. Zhang, "Investigation of Zero Temperature Compensated Cuts in Langasite-Type Piezocrystals for High Temperature Applications," J. Phys. D: Appl. Phys., 43[16] 165402 (2010). https://doi.org/10.1088/0022-3727/43/16/165402
  134. J. Xin, Y. Zheng, H. Kong, H. Chen, X. Tu, and E. Shi, "Growth of a New Ordered Langasite Structure Crystal $Ca_3TaAl_3Si_2O_{14}$," Cryst. Growth Des., 8 [8] 2617-19 (2008). https://doi.org/10.1021/cg800354q
  135. S. Zhang, H. Kong, R. Xia, Y. Zheng, J. Xin, and T. R. Shrout, "Growth and High-Temperature Electromechanical Properties of (and Al) Piezoelectric Crystals," Solid State Commun., 150 [9-10] 435-38 (2010). https://doi.org/10.1016/j.ssc.2009.12.009
  136. K. Xiong, Y. Zheng, X. Tu, S. Zhang, H. Kong, and E. Shi, "Growth and High Temperature Properties of $Ca_3Ta(Al_{0.9}Ga_{0.1})_3Si_2O_{14}$ Crystals with Ordered Langasite Structure," J. Cryst. Growth, 401 820-23 (2014). https://doi.org/10.1016/j.jcrysgro.2013.12.058
  137. S. Zhang, E. Frantz, R. Xia, W. Everson, J. Randi, D. W. Snyder, and T. R. Shrout, "Gadolinium Calcium Oxyborate Piezoelectric Single Crystals for Ultrahigh Temperature (> $1000^{\circ}C$) Applications," J. Appl. Phys., 104 [8] 084103 (2008). https://doi.org/10.1063/1.3000560
  138. H. Shimizu, T. Nishida, H. Takeda, and T. Shiosaki, "Dielectric, Elastic and Piezoelectric Properties of $RCa_4O(BO_3)_3$ (R=Rare-Earth Elements) Crystals with Monoclinic Structure of Point Group m," J. Cryst. Growth, 311 [3] 916-20 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.144
  139. F. Yu, S. Zhang, X. Zhao, D. Yuan, C.-M. Wang, and T. R. Shrout, "Characterization of Neodymium Calcium Oxyborate Piezoelectric Crystal with Monoclinic Phase," Cryst. Growth Des., 10 [4] 1871-77 (2010). https://doi.org/10.1021/cg9015756
  140. F. Yu, S. Zhang, X. Zhao, D. Yuan, L. Qin, Q. M. Wang, and T. R. Shrout, "Dielectric and Electromechanical Properties of Rare Earth Calcium Oxyborate Piezoelectric Crystals at High Temperatures," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 [4] 868-73 (2011). https://doi.org/10.1109/TUFFC.2011.1881
  141. J. A. Johnson, K. Kim, S. Zhang, D. Wu, and X. Jiang, "High-Temperature Acoustic Emission Sensing Tests Using a Yttrium Calcium Oxyborate Sensor," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 61 [5] 805-14 (2014). https://doi.org/10.1109/TUFFC.2014.2972
  142. H. Zu, H. Wu, and Q. M. Wang, "High-Temperature Piezoelectric Crystals for Acoustic Wave Sensor Applications," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 63 [3] 486-505 (2016). https://doi.org/10.1109/TUFFC.2016.2527599
  143. S. Zhang, X. Jiang, M. Lapsley, P. Moses, and T. R. Shrout, "Piezoelectric Accelerometers for Ultrahigh Temperature Application," Appl. Phys. Lett., 96 [1] 013506 (2010). https://doi.org/10.1063/1.3290251
  144. D. Yuan, Z. Jia, J. Wang, Z. Gao, J. Zhang, X. Fu, J. Shu, Y. Yin, Q. Hua, and X. Tao, "Bulk Growth, Structure, and Characterization of the New Monoclinic $TbCa_4O(BO_3)_3$ Crystal," CrystEngComm, 16 [19] 4008-15 (2014). https://doi.org/10.1039/C4CE00051J
  145. V. G. Smotrakov, V. V. Eremkin, A. E. Panich, L. A. Shilkina, and V. A. Aleshin, "Optimization of Ceramic Fillers for 0-3 Piezoelectric Composites," Inorg. Mater., 40 [7] 780-83 (2004). https://doi.org/10.1023/B:INMA.0000034781.55925.e2
  146. S. J. Krumbein, "Metallic Electromigration Phenomena," IEEE Trans. Compon., Hybrids, Manuf. Technol., 11 [1] 5-15 (1988). https://doi.org/10.1109/33.2957
  147. X. Long and Z.-G. Ye, "Top-Seeded Solution Growth and Characterization of Rhombohedral PMN-30PT Piezoelectric Single Crystals," Acta Mater., 55 [19] 6507-12 (2007). https://doi.org/10.1016/j.actamat.2007.08.009
  148. D. Pang, X. Long, and H. Tailor, "A Lead-Reduced Ferrolectric Solid Solution with High Curie Temperature: $BiScO_3-Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$," Ceram. Int., 40 [8] 12953-59 (2014). https://doi.org/10.1016/j.ceramint.2014.04.156
  149. C. He, X. Li, Z. Wang, Y. Liu, D. Shen, T. Li, and X. Long, "Characterization of $Pb(In_{1/2}Nb_{1/2})O_3-PbTiO_3$ Ferroelectric Crystals Grown by Top-Seeded Solution Growth Method," J. Alloys Compd., 539 17-20 (2012). https://doi.org/10.1016/j.jallcom.2012.06.050
  150. T. Li and X. Long, "High-Performance Ferroelectric Solid Solution Crystals: $Pb(In_{1/2}Nb_{1/2})O_3-Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$," J. Am. Ceram. Soc., 97 [9] 2850-57 (2014). https://doi.org/10.1111/jace.13035
  151. M. Matsushita, Y. Tachi, and K. Echizenya, "Growth of 3-in Single Crystals of Piezoelectric $Pb[(Zn_{1/3}Nb_{2/3})_{0.91}Ti_{0.09}]O_3$ by the Supported Solution Bridgman Method," J. Cryst. Growth, 237-239 853-57 (2002). https://doi.org/10.1016/S0022-0248(01)02052-8
  152. J. Xu, J. Tong, M. Shi, A. Wu, and S. Fan, "Flux Bridgman growth of $Pb[(Zn_{1/3}Nb_{2/3})_{0.93}Ti_{0.07}]O_3$ Piezocrystals," J. Cryst. Growth, 253[1-4] 274-79 (2003). https://doi.org/10.1016/S0022-0248(03)01011-X
  153. L. C. Lim and K. K. Rajan, "High-Homogeneity High-Performance Flux-Grown $Pb(Zn_{1/3}Nb_{2/3})O_3$-(6-7)%$PbTiO_3$ Single Crystals," J. Cryst. Growth, 271 [3-4] 435-44 (2004). https://doi.org/10.1016/j.jcrysgro.2004.07.081
  154. M. Jin, J. Xu, M. Shi, X. Wu, and J. Tong, "Growth of High Performance Piezoelectric Crystal $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ Using PbO Flux," Ultrasonics, 46 [2] 129-32 (2007). https://doi.org/10.1016/j.ultras.2007.01.002
  155. S. Zhang, L. Laurent, S. Liu, S. Rhee, C. A. Randall, and T. R. Shrout, "Piezoelectric Shear Coefficients of $Pb(Zn_{1/3}Nb_{2/3})O_3-PbTiO_3$ Single Crystals," Jpn. J. Appl. Phys., 41 [Part 2, No. 10A] L1099-102 (2002). https://doi.org/10.1143/JJAP.41.L1099
  156. J. Xu, S. Fan, B. Lu, J. Tong, and A. Zhang, "Seeded Growth of Relaxor Ferroelectric Single Crystals $Pb[(Zn_{1/3}Nb_{2/3})_[0.91}Ti_{0.09}]O_3$ by the Vertical Bridgman Method," Jpn. J. Appl. Phys., 41 [Part 1, No. 11B] 7000-2 (2002). https://doi.org/10.1143/JJAP.41.7000
  157. J. Xu, X. Wu, J. Tong, M. Shi, and G. Qian, "Two-Step Bridgman Growth of 0.91$Pb(Zn_{1/3}Nb_{2/3})O_3$-0.09$PbTiO_3$ Single Crystals," J. Cryst. Growth, 280 [1-2] 107-12 (2005). https://doi.org/10.1016/j.jcrysgro.2005.02.067
  158. K. K. Rajan, Y. S. Ng, J. Zhang, and L. C. Lim, "[001]-Poled $Pb(Zn_{1/3}Nb_{2/3})O_3$-(6-7)%$PbTiO_3k_{31}$-Actuators: Effects of Initial Domain Structure, Length Orientation, and Poling Conditions," Appl. Phys. Lett., 85 [18] 4136-38 (2004). https://doi.org/10.1063/1.1809278
  159. S.-J. L. Kang, J.-H. Park, S.-Y. Ko, H.-Y. Lee, and D. J. Green, "Solid-State Conversion of Single Crystals: The Principle and the State-of-the-Art," J. Am. Ceram. Soc., 98 [2] 347-60 (2015). https://doi.org/10.1111/jace.13420
  160. H.-Y. Lee, J.-S. Kim, and D.-Y. Kim, "Fabrication of $BaTiO_3$ Single Crystals Using Secondary Abnormal Grain Growth," J. Eur. Ceram. Soc., 20 [10] 1595-97 (2000). https://doi.org/10.1016/S0955-2219(00)00030-3
  161. M.-S. Kim, J. G. Fisher, S.-J. L. Kang, and H.-Y. Lee, "Grain Growth Control and Solid-State Crystal Growth by $Li2_O/PbO$ Addition and Dislocation Introduction in the PMN-35PT System," J. Am. Ceram. Soc., 89 [4] 1237-43 (2006). https://doi.org/10.1111/j.1551-2916.2005.00883.x
  162. A. Amin, L. E. Cross, and H.-Y. Lee, "Evolution of a Nonspontaneous, High Piezoelectric Coupling Symmetry Axis in Relaxor-Ferroelectric Single Crystals," J. Appl. Phys., 101 [11] 114103 (2007). https://doi.org/10.1063/1.2743739
  163. K.-S. Moon, D. Rout, H.-Y. Lee, and S.-J. L. Kang, "Solid State Growth of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals and Their Enhanced Piezoelectric Properties," J. Cryst. Growth, 317 [1] 28-31 (2011). https://doi.org/10.1016/j.jcrysgro.2011.01.023
  164. J. B. Lim, S. Zhang, H.-Y. Lee, and T. R. Shrout, "Solid State Crystal Growth of $BiScO_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$," J. Electroceram., 29 [2] 139-43 (2012). https://doi.org/10.1007/s10832-012-9745-0
  165. J.-H. Park, H.-Y. Lee, and S.-J. L. Kang, "Solid-State Conversion of $(Na_{1/2}Bi_{1/2})TiO_3-BaTiO_3-(K_{1/2}Na_{1/2})NbO_3$ Single Crystals and Their Piezoelectric Properties," Appl. Phys. Lett., 104 [22] 222910 (2014). https://doi.org/10.1063/1.4881615
  166. J.-Y. Lee, H.-T. Oh, and H.-Y. Lee, "Dielectric and Piezoelectric Properties of "Lead-Free" Piezoelectric Rhombohedral $Ba(Ti_{0.92}Zr_{0.08})O_3$ Single Crystals," J. Korean Ceram. Soc., 53 [2] 171-77 (2016). https://doi.org/10.4191/kcers.2016.53.2.171
  167. H.-T. Oh, J.-Y. Lee, and H.-Y. Lee, "Mn-Modified PMNPZT $[Pb(Mg_{1/3}Nb_{2/3})O_3-Pb(Zr,Ti)O_3]$ Single Crystals for High Power Piezoelectric Transducers," J. Korean Ceram. Soc., 54 [2] 150-57 (2017). https://doi.org/10.4191/kcers.2017.54.2.03
  168. H.-T. Oh, H.-J. Joo, M.-C. Kim, and H.-Y. Lee, "Thickness-Dependent Properties of Undoped and Mn-doped (001) PMN-29PT [$Pb(Mg_{1/3}Nb_{2/3})O_3$-29$PbTiO_3$] Single Crystals," J. Korean Ceram. Soc., 55 [3] 290-98 (2018). https://doi.org/10.4191/kcers.2018.55.3.07
  169. J. Callerame, R. H. Tancrell, and D. T. Wilson, "Transmitters and Receivers for Medical Ultrasonics," pp. 407-11, in Proceeding of IEEE Ultrasonics Symposium, 1979.
  170. Z. Zhang, F. Li, R. Chen, T. Zhang, X. Cao, S. Zhang, Thomas R. Shrout, Hairong Zheng, K. Kirk Shung, Mark S. Humayun, Weibao Qiu, and Qifa Zhou, "High-Performance Ultrasound Needle Transducer Based on Modified PMN-PT Ceramic With Ultrahigh Clamped Dielectric Permittivity," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 65 [2] 223-30 (2018). https://doi.org/10.1109/TUFFC.2017.2778738
  171. N. P. Sherlock, L. M. Garten, S. J. Zhang, T. R. Shrout, and R. J. Meyer, "Nonlinear Dielectric Response in Piezoelectric Materials for Underwater Transducers," J. Appl. Phys., 112 [12] 124108 (2012). https://doi.org/10.1063/1.4770355
  172. S. Trolier-McKinstry, N. Bassiri Gharb, and D. Damjanovic, "Piezoelectric Nonlinearity due to Motion of $180^{\circ}$ Domain Walls in Ferroelectric Materials at Subcoercive Fields: A Dynamic Poling Model," Appl. Phys. Lett., 88 [20] 202901 (2006). https://doi.org/10.1063/1.2203750
  173. A. Bernal, S. Zhang, and N. Bassiri-Gharb, "Effects of Orientation and Composition on the Extrinsic Contributions to the Dielectric Response of Relaxor-Ferroelectric Single Crystals," Appl. Phys. Lett., 95 [14] 142911 (2009). https://doi.org/10.1063/1.3245316
  174. N. P. Sherlock and R. J. Meyer, "Large Signal Response and Harmonic Distortion in Piezoelectrics for SONAR Transducers," J. Electroceram., 28 [2-3] 202-7 (2012). https://doi.org/10.1007/s10832-012-9708-5
  175. N. P. Sherlock and R. J. Meyer Jr., "Modified Single Crystals for High-Power Underwater Projectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 [6] 1285-91 (2012). https://doi.org/10.1109/TUFFC.2012.2319
  176. N. P. Sherlock, S. Zhang, J. Luo, H.-Y. Lee, T. R. Shrout, and R. J. Meyer, "Large Signal Electromechanical Properties of Low Loss (1-x)$Pb(Mg_{1/3}Nb_{2/3})O_3$-x$PbTiO_3$ Single Crystals," J. Appl. Phys., 107 [7] 074108 (2010). https://doi.org/10.1063/1.3359716
  177. S. Zhang, N. P. Sherlock, R. J. Meyer, and T. R. Shrout, "Crystallographic Dependence of Loss in Domain Engineered Relaxor-PT Single Crystals," Appl. Phys. Lett., 94 [16] 162906 (2009). https://doi.org/10.1063/1.3125431
  178. G. Liu, S. Zhang, W. Jiang, and W. Cao, "Losses in Ferroelectric Materials," Mater. Sci. Eng., R, 89 1-48 (2015). https://doi.org/10.1016/j.mser.2015.01.002
  179. H. Jae Lee, S. Zhang, R. J. Meyer, Jr., N. P. Sherlock, and T. R. Shrout, "Characterization of Piezoelectric Ceramics and 1-3 Composites for High Power Transducers," Appl. Phys. Lett., 101 [3] 032902 (2012). https://doi.org/10.1063/1.4737651
  180. K. Uchino, J. H. Zheng, Y. H. Chen, X. H. Du, J. Ryu, Y. Gao, S. Ural, S. Priya, and S. Hirose, "Loss Mechanisms and High Power Piezoelectrics," J. Mater. Sci., 41 [1] 217-28 (2006). https://doi.org/10.1007/s10853-005-7201-0
  181. K. Uchino, J. Zheng, Y. H. Chen, X. Du, S. Hirose, and S. Takahashi, "Loss Mechanisms in Piezoelectrics," pp. 25-31 in Proceeding Materials Research Society Symposium, Vol. 604, 2000.
  182. T. Tsurumi, "Non-linear Piezoelectric and Dielectric Behaviors in Perovskite Ferroelectrics," J. Ceram. Soc. Jpn., 115 [1337] 17-22 (2007). https://doi.org/10.2109/jcersj.115.17
  183. T. Tsurumi, Y.-B. Kil, K. Nagatoh, H. Kakemoto, S. Wada, and S. Takahashi, "Intrinsic Elastic, Dielectric, and Piezoelectric Losses in Lead Zirconate Titanate Ceramics Determined by an Immittance-Fitting Method," J. Am. Ceram. Soc., 85 [8] 1993-96 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00393.x
  184. D. Damjanovic, "Hysteresis in Piezoelectric and Ferroelectric Materials," Sci. Hysteresis, 3 337-465 (2006).
  185. A. Amin, E. McLaughlin, H. Robinson, and L. Ewart, "Mechanical and Thermal Transitions in Morphotropic PZN-PT and PMN-PT Single Crystals and their Implication for Sound Projectors," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 54 [6] 1090-95 (2007). https://doi.org/10.1109/TUFFC.2007.362
  186. E. A. McLaughlin, T. Liu, and C. S. Lynch, "Relaxor Ferroelectric PMN-32%PT Crystals under Stress and Electric Field Loading: I-32 Mode Measurements," Acta Mater., 52 [13] 3849-57 (2004). https://doi.org/10.1016/j.actamat.2004.04.034
  187. H. C. Robinson, "Large Signal Dielectric Losses in Electrostrictive Materials," Proc. SPIE, 3992 91-102 (2000).
  188. S. Zhang, F. Li, J. Luo, R. Xia, W. Hackenberger, and T. Shrout, "Field Stability of Piezoelectric Shear Properties in PIN-PMN-PT Crystals under Large Drive Field," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 58 [2] 274-80 (2011). https://doi.org/10.1109/TUFFC.2011.1804
  189. C. Jie and R. Panda, "Review: Commercialization of Piezoelectric Single Crystals for Medical Imaging Applications," pp. 235-40, in Proceeding of IEEE Ultrasonics Symposium, 2005.
  190. K. Kim, S. Zhang, W. Huang, F. Yu, and X. Jiang, "$YCa_4O(BO_3)_3$ (YCOB) High Temperature Vibration Sensor," J. Appl. Phys., 109 [12] 126103 (2011). https://doi.org/10.1063/1.3598115
  191. D. Parks, S. Zhang, and B. Tittmann, "High-Temperature (> $500^{\circ}C$) Ultrasonic Transducers: an Experimental Comparison among Three Candidate Piezoelectric Materials," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 60 [5] 1010-15 (2013). https://doi.org/10.1109/TUFFC.2013.2659
  192. W. J. Fleming, "Overview of Automotive Sensors," IEEE Sens J. 1 [4] 296-308 (2001). https://doi.org/10.1109/7361.983469
  193. V. Korman, G. W. Hunter, J. D. Wrbanek, R. S. Okojie, P. G. Neudeck, G. C. Fralick, L. Chen, J. Xu, and G. M. Beheim, "Development and Application of High-Temperature Sensors and Electronics for Propulsion Applications," Proc. SPIE, 6222 622209 (2006).
  194. G. W. Hunter, J. D. Wrbanek, R. S. Okojie, P. G. Neudeck, G. C. Fralick, L. Chen, J. Xu, and G. M. Beheim, "Devel opment and Application of High Temperature Sensors and Electronics for Propulsion Applications," article 622209 in Proceeding of SPIE, Vol. 6222, 2006.
  195. S. Zhang, Y. Fei, B. H. Chai, E. Frantz, D. W. Snyder, X. Jiang, and T. R. Shrout, "Characterization of Piezoelectric Single Crystal $YCa_4O(BO_3)_3$ for High Temperature Applications," Appl. Phys. Lett., 92 [20] 202905 (2008). https://doi.org/10.1063/1.2936276
  196. R. W. Johnson, J. L. Evans, P. Jacobsen, J. R. Thompson, and M. Christopher, "The Changing Automotive Environment: High-Temperature Electronics," IEEE Trans. Electron. Packag. Manuf., 27 [3] 164-76 (2004). https://doi.org/10.1109/TEPM.2004.843109
  197. R. Kazys, A. Voleisis, and B. Voleisiene, "High Temperature Ultrasonic Transducers: Review," Ultragarsas, 63 [2] 7-17 (2008).
  198. S. Zhang, F. Yu, R. Xia, Y. Fei, E. Frantz, X. Zhao, D. Yuan, B. H. T. Chai, D. Snyder, and T. R. Shrout, "High Temperature ReCOB Piezocrystals: Recent Developments," J. Cryst. Growth, 318 [1] 884-89 (2011). https://doi.org/10.1016/j.jcrysgro.2010.11.032
  199. S. Zhang, F. Li, W. Jiang, J. Luo, R. J. Meyer, Jr., W. Cao, and T. R. Shrout, "Face Shear Piezoelectric Properties of Relaxor-$PbTiO_3$ Single Crystals," Appl. Phys. Lett., 98 [18] 182903 (2011). https://doi.org/10.1063/1.3584851
  200. X. Huo, S. Zhang, G. Liu, R. Zhang, J. Luo, R. Sahul, W. Cao, and T. R. Shrout, "Complete Set of Elastic, Dielectric, and Piezoelectric Constants of [011]C Poled Rhombohedral $Pb(In_{0.5}Nb_{0.5})O_3-Pb(Mg_{1/3}Nb_{2/3})O_3-PbTiO_3$:Mn Single Crystals," J. Appl. Phys., 113 [7] 074106 (2013). https://doi.org/10.1063/1.4792661
  201. M. Budimir, D. Damjanovic, and N. Setter, "Piezoelectric Anisotropy-Phase Transition Relations in Perovskite Single Crystals," J. Appl. Phys., 94 [10] 6753-61 (2003). https://doi.org/10.1063/1.1625080
  202. D. Damjanovic, M. Budimir, M. Davis, and N. Setter, "Piezoelectric Anisotropy: Enhanced Piezoelectric Response along Nonpolar Directions in Perovskite Crystals," J. Mater. Sci., 41 [1] 65-76 (2006). https://doi.org/10.1007/s10853-005-5925-5
  203. M. Davis, M. Budimir, D. Damjanovic, and N. Setter, "Rotator and Extender Ferroelectrics: Importance of the Shear Coefficient to the Piezoelectric Properties of Domain-Engineered Crystals and Ceramics," J. Appl. Phys., 101 [5] 054112 (2007). https://doi.org/10.1063/1.2653925
  204. M. Davis, D. Damjanovic, and N. Setter, "Correlation between Dielectric Anisotropy and Positive or Zero Transverse Piezoelectric Coefficients in Perovskite Ferroelectric Single Crystals," Appl. Phys. Lett., 87 [10] 102904 (2005). https://doi.org/10.1063/1.2041827
  205. D. C. Lagoudas, X. Jiang, P. W. Rehrig, W. S. Hackenberger, and T. R. Shrout, "Large-Stroke Low-Profile Single-Crystal Piezoelectric Actuators," 5053 436 (2003).
  206. S. Dong, L. Yan, D. Viehland, X. Jiang, and W. S. Hackenberger, "A Piezoelectric Single Crystal Traveling Wave Step Motor for Low-Temperature Application," Appl. Phys. Lett., 92 [15] 153504 (2008). https://doi.org/10.1063/1.2908963
  207. X. Jiang, "Single Crystal Piezoelectric Actuators for Tunable HTS Filters," AIP Conf. Proc., 823 [1] 928-35 (2006).
  208. D. Stamopoulos, M. Zeibekis, and S. J. Zhang, "Modulation of the Properties of Thin Ferromagnetic Films with an Externally Applied Electric Field in Ferromagnetic/Piezoelectric/Ferromagnetic Hybrids," J. Appl. Phys., 114 [13] 134309 (2013). https://doi.org/10.1063/1.4824373
  209. D. Stamopoulos, M. Zeibekis, and S. J. Zhang, "Control of Superconductivity by Means of Electric-Field-Induced Strain in Superconductor/Piezoelectric Hybrids," J. Appl. Phys., 123 [2] 023903 (2018). https://doi.org/10.1063/1.5005045
  210. P. Han, W. Yan, J. Tian, X. Huang, and H. Pan, "Cut Directions for the Optimization of Piezoelectric Coefficients of Lead Magnesium Niobate-Lead Titanate Ferroelectric Crystals," Appl. Phys. Lett., 86 [5] 052902 (2005). https://doi.org/10.1063/1.1857085
  211. S. Zhang, W. Jiang, R. J. Meyer, F. Li, J. Luo, and W. Cao, "Measurements of Face Shear Properties in Relaxor-$PbTiO_3$ Single Crystals," J. Appl. Phys., 110 [6] 064106 (2011). https://doi.org/10.1063/1.3638691
  212. S. Goljahi, J. Gallagher, S. J. Zhang, J. Luo, R. Sahul, W. Hackenberger, and C. S. Lynch, "A Relaxor Ferroelectric Single Crystal Cut Resulting in Large $d_{312}$ and Zero $d_{311}$ for a Shear Mode Accelerometer and Related Applications," Smart Mater. Struct., 21 [5] 055005 (2012). https://doi.org/10.1088/0964-1726/21/5/055005
  213. K. Kim, S. Zhang, and X. Jiang, "Surface Load Induced Electrical Impedance Shift in Relaxor-$PbTiO_3$ Crystal Piezoelectric Resonators," Appl. Phys. Lett., 100 [25] 253501 (2012). https://doi.org/10.1063/1.4729766
  214. P. Ci, G. Liu, Z. Chen, S. Zhang, and S. Dong, "High-Order Face-Shear Modes of Relaxor-$PbTiO_3$ Crystals for Piezoelectric Motor Applications," Appl. Phys. Lett., 104 [24] 242911 (2014). https://doi.org/10.1063/1.4884652
  215. K. Kim, S. Zhang, and X. Jiang, "Surface Acoustic Load Sensing Using a Face-Shear PIN-PMN-PT Single-Crystal Resonator," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 59 [11] 2548-54 (2012). https://doi.org/10.1109/TUFFC.2012.2488
  216. Z.-Y. Shen, Y. Tang, S. Zhang, J. Luo, Y. Li, and T. R. Shrout, "Enhanced Piezoelectric Activity and Temperature Stability of [111]-Oriented Orthorhombic 0.68$Pb(Mg_{1/3}Nb_{2/3})O_3-0.32PbTiO_3$ Single Crystals by Domain Size Engineering," Scr. Mater., 72-73 17-20 (2014). https://doi.org/10.1016/j.scriptamat.2013.10.004
  217. F. Li, S. Zhang, Z. Xu, X. Wei, and T. R. Shrout, "Critical Property in Relaxor-$PbTiO_3$ Single Crystals - Shear Piezoelectric Response," Adv. Funct. Mater., 21 [11] 2118-28 (2011). https://doi.org/10.1002/adfm.201002711
  218. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Temperature Independent Shear Piezoelectric Response in Relaxor-$PbTiO_3$ Based Crystals," Appl. Phys. Lett., 97 [25] 252903 (2010). https://doi.org/10.1063/1.3529952
  219. S. Zhang and T. Shrout, "Relaxor-PT Single Crystals: Observations and Developments," IEEE Trans. Ultrason. Ferroelectr. Freq. Control, 57 [10] 2138-46 (2010). https://doi.org/10.1109/TUFFC.2010.1670
  220. F. Martin, H. J. M. ter Brake, L. Lebrun, S. Zhang, and T. Shrout, "Dielectric and Piezoelectric Activities in (1-x)$Pb(Mg_{1/3}Nb_{2/3})O_3$-x$PbTiO_3$ Single Crystals from 5 K to 300 K," J. Appl. Phys., 111 [10] 104108 (2012). https://doi.org/10.1063/1.4716031
  221. F. Li, S. Zhang, Z. Xu, X. Wei, J. Luo, and T. R. Shrout, "Piezoelectric Activity of Relaxor-$PbTiO_3$ based Single Crystals and Polycrystalline Ceramics at Cryogenic Temperatures: Intrinsic and Extrinsic Contributions," Appl. Phys. Lett., 96 [19] 192903 (2010). https://doi.org/10.1063/1.3430059
  222. X. Jiang, "Cryogenic Actuators and Motors Using Single Crystal Piezoelectrics," AIP Conf. Proc., 823 [1] 1783-89 (2006).
  223. J. B. Heaney, M. L. Mulvihill, L. G. Burriesci, M. E. Roche, J. L. Cavaco, R. J. Shawgo, Z. A. Chaudhry, and M. A. Ealey, "Cryogenic Deformable Mirror Technology Development," Proc. SPIE, 5172 60 (2003).
  224. J. P. Lynch, K.-W. Wang, H. Sohn, S. Sherrit, W. Zimmer man, N. Takano, and L. Avellar, "Miniature Cryogenic Valves for a Titan Lake Sampling System," Proc. SPIE, 9061 90613J (2014).
  225. T.-B. Xu, L. Tolliver, X. Jiang, and J. Su, "A Single Crystal Lead Magnesium Niobate-Lead Titanate Multilayer-Stacked Cryogenic Flextensional Actuator," Appl. Phys. Lett., 102 [4] 042906 (2013). https://doi.org/10.1063/1.4790142
  226. F. Yu, S. Zhang, X. Zhao, S. Guo, X. Duan, D. Yuan, and T. R. Shrout, "Investigation of the Dielectric and Piezoelectric Properties of Re$Ca_4O(BO_3)_3$ Crystals," J. Phys. D: Appl. Phys., 44 [13] 135405 (2011). https://doi.org/10.1088/0022-3727/44/13/135405
  227. C. Shen, S. Zhang, D. Wang, T. Xu, H. Yu, W. Cao, J. Wang, and H. Zhang, "Growth and Property Characterization of $CaNdGa_3O_7$ and $SrNdGa_3O_7 $Melilite Single Crystals," CrystEngComm, 17 [8] 1791-99 (2015). https://doi.org/10.1039/C4CE02015D
  228. F. Yu, Q. Lu, S. Zhang, H. Wang, X. Cheng, and X. Zhao, "High-Performance, High-Temperature Piezoelectric $BiB_3O_6$ Crystals," J. Mater. Chem. C, 3 [2] 329-38 (2015). https://doi.org/10.1039/C4TC02112F
  229. F. Chen, L. Kong, F. Yu, C. Wang, Q. Lu, S. Zhang, Y. Li, X. Duan, L. Qin, and X. Zhao, "Investigation of the Crystal Growth, Thickness and Radial Modes of ${\alpha}-BiB_3O_6$ Piezoelectric Crystals," CrystEngComm, 19 [3] 546-51 (2017). https://doi.org/10.1039/C6CE02289H
  230. M. Beaurain, P. Armand, and P. Papet, "Synthesis and Characterization of ${\alpha}-GaPO_4$ Single Crystals Grown by the Flux Method," J. Cryst. Growth, 294 [2] 396-400 (2006). https://doi.org/10.1016/j.jcrysgro.2006.05.074
  231. H. Fritze, "High-Temperature Bulk Acoustic Wave Sensors," Meas. Sci. Technol., 22 [1] 012002 (2011). https://doi.org/10.1088/0957-0233/22/1/012002
  232. E. Cross, "Materials Science: Lead-Free at Last," Nature, 432 [7013] 24-5 (2004). https://doi.org/10.1038/nature03142
  233. H. T. Y. Saito, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, and M. Nakamura, "Lead-Free Piezoceramics," Nature, 432 [7013] 84-7 (2004). https://doi.org/10.1038/nature03028
  234. R. Zuo, J. Rodel, R. Chen, and L. Li, "Sintering and Electrical Properties of Lead-Free $Na_{0.5}K_{0.5}NbO_3$ Piezoelectric Ceramics," J. Am. Ceram. Soc., 89 [6] 2010-15 (2006). https://doi.org/10.1111/j.1551-2916.2006.00991.x
  235. S.-T. Zhang, A. B. Kounga, E. Aulbach, W. Jo, T. Granzow, H. Ehrenberg, and Jurgen Rodel, "Lead-Free Piezoceramics with Giant Strain in the System $Bi_{0.5}Na_[0.5}TiO_3-BaTiO_3-K_{0.5}Na_{0.5}NbO_3$. II. Temperature Dependent Properties," J. Appl. Phys., 103 [3] 034108 (2008). https://doi.org/10.1063/1.2838476
  236. X. Tan, E. Aulbach, W. Jo, T. Granzow, J. Kling, M. Marsilius, H.-J. Kleebe, and J. Rodel, "Effect of Uniaxial Stress on Ferroelectric Behavior of $(Bi_{1/2}Na_{1/2})TiO_3$-Based Lead-Free Piezoelectric Ceramics," J. Appl. Phys., 106 [4] 044107 (2009). https://doi.org/10.1063/1.3207827
  237. J. Rodel, W. Jo, K. T. P. Seifert, E.-M. Anton, T. Granzow, and D. Damjanovic, "Perspective on the Development of Lead-Free Piezoceramics," J. Am. Ceram. Soc., 92 [6] 1153-77 (2009). https://doi.org/10.1111/j.1551-2916.2009.03061.x
  238. H. Simons, J. Daniels, W. Jo, R. Dittmer, A. Studer, M. Avdeev, J. Rodel, and M. Hoffman, "Electric-Field-Induced Strain Mechanisms in Lead-Free 94%$(Bi_{1/2}Na_{1/2})TiO_3-6%BaTiO_3$," Appl. Phys. Lett., 98 [8] 082901 (2011). https://doi.org/10.1063/1.3557049
  239. J. Rodel, K. G. Webber, R. Dittmer, W. Jo, M. Kimura, and D. Damjanovic, "Transferring Lead-Free Piezoelectric Ceramics into Application," J. Eur. Ceram. Soc., 35 [6] 1659-81 (2015). https://doi.org/10.1016/j.jeurceramsoc.2014.12.013
  240. J. Koruza, A. J. Bell, T. Fromling, K. G. Webber, K. Wang, and J. Rodel, "Requirements for the Transfer of Lead-Free Piezoceramics into Application," J. Materiomics, 4 [1] 13-26 (2018). https://doi.org/10.1016/j.jmat.2018.02.001
  241. S. Zhang, R. Xia, and T. R. Shrout, "Modified $(K_{0.5}Na_{0.5})NbO_3$ Based Lead-Free Piezoelectrics with Broad Temperature Usage Range," Appl. Phys. Lett., 91 [13] 132913 (2007). https://doi.org/10.1063/1.2794400
  242. J. Wu, D. Xiao, and J. Zhu, "Potassium-Sodium Niobate Lead-Free Piezoelectric Materials: Past, Present, and Future of Phase Boundaries," Chem. Rev., 115 [7] 2559-95 (2015). https://doi.org/10.1021/cr5006809
  243. K. Xu, J. Li, X. Lv, J. Wu, X. Zhang, D. Xiao, and J. Zhu, "Superior Piezoelectric Properties in Potassium-Sodium Niobate Lead-Free Ceramics," Adv. Mater., 28 [38] 8519-23 (2016). https://doi.org/10.1002/adma.201601859
  244. X. Wang, F. Tian, C. Zhao, J. Wu, Y. Liu, B. Dkhil, M. Zhang, Z. Gao, and X. Lou, "Giant Electrocaloric Effect in Lead-Free $Ba_{0.94}Ca_{0.06}Ti_[1-x}Sn_xO_3$ Ceramics with Tunable Curie Temperature," Appl. Phys. Lett., 107 [25] 252905 (2015). https://doi.org/10.1063/1.4938134
  245. X. Cheng, J. Wu, X. Wang, B. Zhang, J. Zhu, D. Xiao, X. Wang, and X. Lou, "Giant $d_{33}$ in $(K,Na)(Nb,Sb)O_3-(Bi,Na,K,Li)ZrO_3$ Based Lead-Free Piezoelectrics with High $T_c$," Appl. Phys. Lett., 103 [5] 052906 (2013). https://doi.org/10.1063/1.4817517
  246. M.-H. Zhang, H. C. Thong, Y. X. Lu, W. Sun, J.-F. Li, and K. Wang, "$(K,Na)NbO_3$-Based Lead-Free Piezoelectric Materials: An Encounter with Scanning Probe Microscopy," J. Korean Ceram. Soc., 54 [4] 261-71 (2017). https://doi.org/10.4191/kcers.2017.54.4.10
  247. W. Jo, R. Dittmer, M. Acosta, J. Zang, C. Groh, E. Sapper, K. Wang, and J. Rodel, "Giant Electric-Field-Induced Strains in Lead-Free Ceramics for Actuator Applications - Status and Perspective," J. Electroceram., 29 [1] 71-93 (2012). https://doi.org/10.1007/s10832-012-9742-3
  248. R. Wang, H. Bando, T. Katsumata, Y. Inaguma, H. Taniguchi, and M. Itoh, "Tuning the Orthorhombic-Rhombohedral Phase Transition Temperature in Sodium Potassium Niobate by Incorporating Barium Zirconate," Phys. Status Solidi RRL, 3 [5] 142-44 (2009). https://doi.org/10.1002/pssr.200903090
  249. R. Wang, R.-J. Xie, K. Hanada, K. Matsusaki, H. Bando, T. Sekiya, and M. Itoh, "Phase Diagram of the $(Na_{0.5}K_{0.5})NbO_3-ATiO_3$ Solid Solution," Ferroelectrics, 336 [1] 39-46 (2011). https://doi.org/10.1080/00150190600695321
  250. P. Li, J. Zhai, B. Shen, S. Zhang, X. Li, F. Zhu, and X. Zhang, "Ultrahigh Piezoelectric Properties in Textured $(K,Na)NbO_3$ -Based Lead-Free Ceramics," Adv. Mater., 30 [8] 1705171 (2018). https://doi.org/10.1002/adma.201705171
  251. J. Hao, C. Ye, B. Shen, and J. Zhai, "Enhanced Electrostricitive Properties and Thermal Endurance of Textured $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3-(K_{0.5}Na_{0.5})NbO_3$ Ceramics," J. Appl. Phys., 114 [5] 054101 (2013). https://doi.org/10.1063/1.4817278
  252. M. Jiang, C. A. Randall, H. Guo, G. Rao, R. Tu, Z. Gu, G. Cheng, X. Liu, J. Zhang, and Y. Li, "Seed-Free Solid-State Growth of Large Lead-Free Piezoelectric Single Crystals: $(Na_{1/2}K_{1/2})NbO_3$," J. Am. Ceram. Soc., 98 [10] 2988-96 (2015). https://doi.org/10.1111/jace.13723
  253. C.-H. Hong, H.-P. Kim, B.-Y. Choi, H.-S. Han, J. S. Son, C. W. Ahn, and W. Jo, "Lead-Free Piezoceramics - Where to Move on?," J. Materiomics, 2 [1] 1-24 (2016). https://doi.org/10.1016/j.jmat.2015.12.002
  254. C. W. Ahn, H. Y. Lee, G. Han, S. Zhang, S. Y. Choi, J. J. Choi, J.-W. Kim, W.-H. Yoon, J.-H. Choi, D.-S. Park, B.-D. Hahn, and J. Ryu, "Self-Growth of Centimeter-Scale Single Crystals by Normal Sintering Process in Modified Potassium Sodium Niobate Ceramics," Sci. Rep., 5 17656 (2015). https://doi.org/10.1038/srep17656
  255. Y.-Q. Lu and Y.-X. Li, "A Review on Lead-Free Piezoelectric Ceramics Studies in China," J. Adv. Dielectr., 01 [03] 269-88 (2011). https://doi.org/10.1142/S2010135X11000409
  256. J. Yang, Z. Fu, Q. Yang, Y. Li, and Y. Liu, "Effect of Seeds and Sintering Additives on $(K,Na,Li)NbO_3$ Lead-Free Single Crystals Grown by a Solid-State Crystal Growth Method," J. Ceram. Soc. Jpn., 124 [4] 365-69 (2016). https://doi.org/10.2109/jcersj2.15264
  257. J. Yang, Q. Yang, Y. Li, and Y. Liu, "Growth Mechanism and Enhanced Electrical Properties of $K_{0.5}Na_{0.5}NbO_3$ -Based Lead-Free Piezoelectric Single Crystals Grown by a Solid-State Crystal Growth Method," J. Eur. Ceram. Soc., 36 [3] 541-50 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.11.002
  258. J. Yang, F. Zhang, Q. Yang, Z. Liu, Y. Li, Y. Liu, and Q. Zhang, "Large Piezoelectric Properties in KNN-Based Lead-Free Single Crystals Grown by a Seed-Free Solid-State Crystal Growth Method," Appl. Phys. Lett., 108 [18] 182904 (2016). https://doi.org/10.1063/1.4948642
  259. H. Onozuka, Y. Kitanaka, Y. Noguchi, and M. Miyayama, "Crystal Growth and Characterization of $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3$ Single Crystals Obtained by a Top-Seeded Solution Growth Method under High-Pressure Oxygen Atmosphere," Jpn. J. Appl. Phys., 50 [9] 09NE7 (2011).
  260. S. Teranishi, M. Suzuki, Y. Noguchi, M. Miyayama, C. Moriyoshi, Y. Kuroiwa, K. Tawa, and S. Mori, "Giant Strain in Lead-Free $(Bi_{0.5}Na_{0.5})TiO_3$-Based Single Crystals," Appl. Phys. Lett., 92 [18] 182905 (2008). https://doi.org/10.1063/1.2920767
  261. M. Izumi, K. Yamamoto, M. Suzuki, Y. Noguchi, and M. Miyayama, "Large Electric-Field-Induced Strain in $Bi_{0.5}Na_{0.5}TiO_3-Bi_{0.5}K_{0.5}TiO_3$ Solid Solution Single Crystals," Appl. Phys. Lett., 93 [24] 242903 (2008). https://doi.org/10.1063/1.3046791
  262. X. Huo, R. Zhang, L. Zheng, S. Zhang, R. Wang, J. Wang, S. Sang, B. Yang, and W. Cao, "$(K,Na,Li)(Nb,Ta)O_3$:Mn Lead-Free Single Crystal with High Piezoelectric Properties," J. Am. Ceram. Soc., 98 [6] 1829-35 (2015). https://doi.org/10.1111/jace.13540
  263. X. Huo, L. Zheng, S. Zhang, R. Zhang, G. Liu, R. Wang, B. Yang, W. Cao, and T. R. Shrout, "Growth and Properties of Li, Ta Modified $(K,Na)NbO_3$ Lead-Free Piezoelectric Single Crystals," Phys. Status Solidi Rapid Res. Lett., 8 [1] 86-90 (2014). https://doi.org/10.1002/pssr.201308173
  264. D. Lin, S. Zhang, C. Cai, and W. Liu, "Domain Size Engineering in 0.5%$MnO_2-(K_{0.5}Na_{0.5})NbO_3$ Lead Free Piezoelectric Crystals," J. Appl. Phys., 117 [7] 074103 (2015). https://doi.org/10.1063/1.4913208
  265. J. Yao, N. Monsegue, M. Murayama, W. Leng, W. T. Reynolds, Q. Zhang, H. Luo, J. Li, W. Ge, and D. Viehland, "Role of Coexisting Tetragonal Regions in the Rhombohedral Phase of $Na_{0.5}Bi_{0.5}TiO_3-xat.%BaTiO_3$ Crystals on Enhanced Piezoelectric Properties on Approaching the Morphotropic Phase Boundary," Appl. Phys. Lett., 100 [1] 012901 (2012). https://doi.org/10.1063/1.3673832
  266. C. Chen, X. Jiang, Y. Li, F. Wang, Q. Zhang, and H. Luo, "Growth and Electrical Properties of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Lead-Free Single Crystal with Morphotropic Phase Boundary Composition," J. Appl. Phys., 108 [12] 124106 (2010). https://doi.org/10.1063/1.3516259
  267. Q. Zhang, X. Li, R. Sun, X. Wu, B. Ren, X. Zhao, and H. Luo, "Electric Properties of Mn Doped 0.95$Na_{0.5}Bi_{0.5}TiO_3-0.05BaTiO_3$ Crystal after Different Annealing Processes," J. Cryst. Growth, 318 [1] 870-73 (2011). https://doi.org/10.1016/j.jcrysgro.2010.10.186
  268. J. Yao, Y. Yang, N. Monsegue, Y. Li, J. Li, Q. Zhang, W. Ge, H. Luo, and D. Viehland, "Effect of Mn Substituents on the Domain and Local Structures of $Na_{1/2}Bi_{1/2}TiO_3-BaTiO_3$ Single Crystals near a Morphotropic Phase Boundary," Appl. Phys. Lett., 98 [13] 132903 (2011). https://doi.org/10.1063/1.3573801
  269. X. Li, C. Chen, H. Deng, H. Zhang, D. Lin, X. Zhao, and H. Luo, "The Growth and Properties of Lead-Free Ferroelectric Single Crystals," Crystals, 5 [2] 172-92 (2015). https://doi.org/10.3390/cryst5020172
  270. M. Ogino, Y. Noguchi, Y. Kitanaka, M. Miyayama, C. Moriyoshi, and Y. Kuroiwa, "Polarization Rotation and Monoclinic Distortion in Ferroelectric $(Bi_{0.5}Na_{0.5})TiO_3-BaTiO_3$ Single Crystals under Electric Fields," Crystals, 4 [3] 273-95 (2014). https://doi.org/10.3390/cryst4030273
  271. T. Chu, C. He, H. Tailor, and X. Long, "Preparation and Characterization of Lead-Free $(K_{0.5}Na_{0.5})NbO_3-LiNbO_3$ and $(K_{0.5}Na_{0.5})NbO_3-LiTaO_3$ Ferroelectric Single Crystals," Crystals, 4 [3] 296-305 (2014). https://doi.org/10.3390/cryst4030296
  272. H. Kimura, H. Zhao, R. Tanahashi, L. Guo, T. Jia, Q. Yao, and Z. Cheng, "Potential Advantage of Multiple Alkali Metal Doped $KNbO_3$ Single Crystals," Crystals, 4 [3] 190-208 (2014). https://doi.org/10.3390/cryst4030190

Cited by

  1. High Energy Storage Properties and Electrical Field Stability of Energy Efficiency of (Pb0.89La0.11)(Zr0.70Ti0.30)0.9725O3 Relaxor Ferroelectric Ceramics pp.2093-6788, 2019, https://doi.org/10.1007/s13391-019-00124-z
  2. 절연파괴특성 향상을 위한 나노미세구조 (Ba0.7Ca0.3)TiO3 후막 제조 및 에너지 저장 특성 평가 vol.29, pp.2, 2018, https://doi.org/10.3740/mrsk.2019.29.2.73
  3. Face-shear 36-mode magnetoelectric composites with piezoelectric single crystal and Metglas laminate vol.115, pp.10, 2018, https://doi.org/10.1063/1.5120092
  4. Effects of phase composition and grain size on the piezoelectric properties of HfO2-doped barium titanate ceramics vol.54, pp.19, 2018, https://doi.org/10.1007/s10853-019-03726-y
  5. Dielectric and piezoelectric properties of Pb[(Mg1/3Nb2/3)0.52(Yb1/2Nb1/2)0.15Ti0.33]O3 single-crystal rectangul vol.58, pp.60, 2018, https://doi.org/10.7567/1347-4065/ab37b7
  6. Alternate current poling and direct current poling for Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals vol.58, pp.60, 2018, https://doi.org/10.7567/1347-4065/ab389c
  7. Temperature Dependence of Electrical Properties and Phase Transition Characteristics of [001]‐Oriented Rhombohedral Mn‐0.15PIN‐0.55PMN‐0.30PT Single Crystal vol.216, pp.23, 2018, https://doi.org/10.1002/pssa.201900457
  8. PMN-PZT/Ni 자기-전기 복합체에서 단결정 압전 모드에 따른 자기장 감도 특성 vol.29, pp.1, 2020, https://doi.org/10.5369/jsst.2019.29.1.45
  9. (K,Na)NbO3-based piezoelectric single crystals: Growth methods, properties, and applications vol.35, pp.8, 2018, https://doi.org/10.1557/jmr.2019.391
  10. Solid-state crystal growth of lead-free ferroelectrics vol.8, pp.23, 2020, https://doi.org/10.1039/d0tc01220c
  11. A Review of Acoustic Impedance Matching Techniques for Piezoelectric Sensors and Transducers vol.20, pp.14, 2018, https://doi.org/10.3390/s20144051
  12. Progress in lead-free piezoelectric nanofiller materials and related composite nanogenerator devices vol.2, pp.8, 2018, https://doi.org/10.1039/c9na00809h
  13. Ferroelectric phase transitions in multi-domain K0.9Na0.1NbO3 epitaxial thin films vol.4, pp.3, 2018, https://doi.org/10.1088/2399-1984/ab9f18
  14. Configurational approach to the enhancement of the dielectric properties and energy density of polyvinylidene fluoride-based polymer composites vol.53, pp.37, 2018, https://doi.org/10.1088/1361-6463/ab88e4
  15. Introducing an extremely high output power and high temperature piezoelectric bimorph energy harvester technology based on the ferroelectric system Bi(Me)O3-PbTiO3 vol.128, pp.14, 2018, https://doi.org/10.1063/5.0005789
  16. Significant power enhancement of magneto-mechano-electric generators by magnetic flux concentration vol.13, pp.11, 2018, https://doi.org/10.1039/d0ee01574a
  17. Effect of field cooling AC poling on electrical and physical properties for Pb(Mg1/3Nb2/3)O3-PbTiO3-based single crystals manufactured by a continuous-feedi vol.59, pp.0, 2018, https://doi.org/10.35848/1347-4065/abb2fe
  18. Enhanced electric property of relaxor ferroelectric crystals with low AC voltage high-temperature poling vol.59, pp.0, 2020, https://doi.org/10.35848/1347-4065/abb2ff
  19. Composition uniformity of Pb(In1/2Nb1/2)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystals grown in ⟨001⟩ direction vol.560, pp.None, 2018, https://doi.org/10.1016/j.jcrysgro.2021.126061
  20. Recent Advances in Transducers for Intravascular Ultrasound (IVUS) Imaging vol.21, pp.10, 2018, https://doi.org/10.3390/s21103540
  21. Dispersion Diagram of Trigonal Piezoelectric Phononic Structures with Langasite Inclusions vol.11, pp.5, 2018, https://doi.org/10.3390/cryst11050491
  22. First-principles study of the composition, cation arrangement, and local structure in high-performance Bi(Me3+)O3-PbTiO3 (Me3+ = Ga, Sc, In) ferroelectric s vol.129, pp.17, 2018, https://doi.org/10.1063/5.0043478
  23. Ferroelectric fatigue and polarization hysteresis behavior of a [001]c Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 single crystal vol.56, pp.16, 2021, https://doi.org/10.1007/s10853-021-05912-3
  24. A review on piezoelectric fibers and nanowires for energy harvesting vol.51, pp.2, 2021, https://doi.org/10.1177/1528083719870197
  25. Growth and piezoelectric properties of large sized Ca3TaGa3Si2O14 crystals vol.23, pp.31, 2018, https://doi.org/10.1039/d1ce00718a
  26. Large electromechanical strain response in BiFeO3-BaTiO3-based ceramics at elevated temperature vol.156, pp.None, 2018, https://doi.org/10.1016/j.jpcs.2021.110133
  27. 압전재료의 기초 물성 측정 vol.34, pp.5, 2021, https://doi.org/10.4313/jkem.2021.34.5.301
  28. Effect of Internal Bias Field on Poling Behavior in Mn-Doped Pb(Mg1/3Nb2/3)O3-29 mol%PbTiO3 Single Crystal vol.34, pp.5, 2018, https://doi.org/10.4313/jkem.2021.34.5.382
  29. Piezoelectric Based Touch Sensing for Interactive Displays-A Short Review vol.14, pp.19, 2018, https://doi.org/10.3390/ma14195698
  30. Experimental verification of mixed metal oxide-based sensor for multiple sensing application vol.301, pp.None, 2018, https://doi.org/10.1016/j.matlet.2021.130248
  31. Enhanced magnetoelectric coupling in stretch-induced shear mode magnetoelectric composites vol.58, pp.6, 2021, https://doi.org/10.1007/s43207-021-00144-2
  32. Optimized piezoelectric properties and temperature stability in PSN‐PMN‐PT by adjusting the phase structure and grain size vol.104, pp.12, 2018, https://doi.org/10.1111/jace.18005
  33. Multiphysics Modeling and Material Selection Methods to Develop Optimal Piezoelectric Plate Actuators for Active Noise Cancellation vol.11, pp.24, 2021, https://doi.org/10.3390/app112411746
  34. Irreversible domain evolutions and formation mechanism of relaxor ferroelectric 0.91PZN-0.09PT single crystals vol.128, pp.1, 2022, https://doi.org/10.1007/s00339-021-05214-0
  35. High piezoelectricity after field cooling AC poling in temperature stable ternary single crystals manufactured by continuous-feeding Bridgman method vol.11, pp.1, 2022, https://doi.org/10.1007/s40145-021-0490-1