DOI QR코드

DOI QR Code

Thermal Shock Resistance of Bilayered YSZ Thermal Barrier Coating

  • Lee, Dong Heon (Department of Automotive Engineering, Kookmin University) ;
  • Kim, Tae Woo (School of Mechanical Engineering, Kookmin University) ;
  • Lee, Kee Sung (School of Mechanical Engineering, Kookmin University) ;
  • Kim, Chul (School of Mechanical Engineering, Kookmin University)
  • Received : 2018.05.18
  • Accepted : 2018.07.15
  • Published : 2018.09.30

Abstract

This study investigate changes in mechanical behaviors such as indentation load-displacement and hardness of thermal barrier coatings (TBCs) using cycling of thermal shock test. Relatively dense and porous TBCs on nickel-based bondcoat/super alloy are prepared using different starting granules, 204C-NS and 204NS commercial powers, and the effect of double layers of 204C-NS on 204NS and 204NS on 204C-NS are investigated. The highest temperature applied during thermal shock test is $1100^{\circ}C$ and the maximum number of cycles is 1,200. The results indicate that bilayered TBC showed a relatively mechanically resistant property during thermal shock cycles and that the mechanical behavior is influenced by the microstructure of TBCs by exposure to high temperature during tests or different starting granules.

Keywords

References

  1. A. Rabiei and A. G. Evans, "Failure Mechanisms Associated with the Thermally Grown Oxide in Plasma-Sprayed Thermal Barrier Coatings," Acta Mater., 48 [15] 3963-76 (2000). https://doi.org/10.1016/S1359-6454(00)00171-3
  2. J. H. Cho, T. W. Kim, Y. G. Jung, and K. S. Lee, "Thermal and Mechanical Evaluation of the Thermal Barrier Layers Coated by Spray Dried Granules," J. Ceram. Process. Res., 10 [3] 344-50 (2009).
  3. K. S. Lee, D. H. Lee, and T. W. Kim, "Microstructure Controls in Gadolinium Zirconate/YSZ Double Layers and Their Properties," J. Ceram. Soc. Jpn., 122 [1428] 668-73 (2014). https://doi.org/10.2109/jcersj2.122.668
  4. A. G. Evans, D. R. Mumm, J. W. Hutchinson, G. H. Meier, and F. S. Pettit, "Mechanisms Controlling the Durability of Thermal Barrier Coatings," Prog. Mater. Sci., 46 [5] 505-53 (2001). https://doi.org/10.1016/S0079-6425(00)00020-7
  5. M. Watanabe, C. Mercer, C. G. Levi, and A. G. Evans, "A Probe for the High Temperature Deformation of Thermal Barrier Oxides," Acta Mater., 52 [6] 1479-87 (2004). https://doi.org/10.1016/j.actamat.2003.11.029
  6. A. G. Evans and J. W. Hutchinson, "The Mechanics of Coating Delamination in Thermal Gradients," Surf. Coat. Technol., 201 [18] 7905-16 (2007). https://doi.org/10.1016/j.surfcoat.2007.03.029
  7. D. H. Lee, T. W. Kim, and K. S. Lee, "Design of Thermal Barrier Coatings using Gadolinium Zirconate Ceramics: A Study on Gadolinium Zirconate/YSZ Bilayers," J. Ceram. Soc. Jpn., 117 [1365] 550-54 (2009). https://doi.org/10.2109/jcersj2.117.550
  8. S. W. Myoung, J. H. Kim, W. R. Lee, Y. G. Jung, and K. S. Lee, "Microstructure Design and Mechanical Properties of Thermal Barrier Coatings with Layered Top and Bond Coats," Surf. Coat. Technol., 205 [5] 1229-35 (2010). https://doi.org/10.1016/j.surfcoat.2010.08.063
  9. K. S. Lee, S. K. Lee, B. R. Lawn, and D. K. Kim, "Contact Damage and Strength Degradation in Brittle/Quasi-Plastic Silicon Nitride Bilayers," J. Am. Ceram. Soc., 81 [9] 2394-404 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02635.x
  10. B. R. Lawn, "Indentation of Ceramics with Spheres: A Century after Hertz," J. Am. Ceram. Soc., 81 [8] 1977-94 (1998). https://doi.org/10.1111/j.1151-2916.1998.tb02580.x
  11. D. H. Lee and K. S. Lee, "Mechanical Behavior of Layered YSZ Thermal Barrier Coatings using Indentation Test," J. Korean Ceram. Soc., 48 [5] 396-403 (2011). https://doi.org/10.4191/kcers.2011.48.5.396
  12. G. Bertrand, P. Bertrand, P. Roy, C. Rio, and R. Mevrel, "Low Conductivity Plasma Sparyed Thermal Barrier Coatings using Hollow PSZ Spheres: Correlation between Thermophysical Properties and Microstructure," Surf. Coat. Technol., 202 [10] 1994-2001 (2008). https://doi.org/10.1016/j.surfcoat.2007.08.042
  13. F. Press, "Optimization of the $NiCrAI-Y/ZrO_2-Y_2O_3$ Thermal Barrier System," (NASA, Lewis Research Center, Cleveland, OH, 1985).
  14. D. H. Lee, N. K. Kang, K. S. Lee, H. S. Moon, H. T. Kim, and C. Kim, "Evaluation of Thermal Durability of Thermal Barrier Coating and Change in Mechanical Behavior," J. Korean Ceram. Soc.,54 [4] 314-22(2017). https://doi.org/10.4191/kcers.2017.54.4.05
  15. W. C. Oliver and G. M. Pharr, "An Improved Technique for Determining Hardness and Elastic Modulus using Load and Displacement Sensing Indentation Experiments," J. Mater. Res., 7 [6] 1564-83 (1992). https://doi.org/10.1557/JMR.1992.1564