DOI QR코드

DOI QR Code

Efficacy of Ag-CuO Filler Tape for the Reactive Air Brazing of Ceramic-Metal Joints

  • Kim, Myung Dong (School of Materials Science and Engineering, Yeungnam University) ;
  • Wahid, Muhamad FR (School of Materials Science and Engineering, Yeungnam University) ;
  • Raju, Kati (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Kim, Seyoung (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Yu, Ji Haeng (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Park, Chun Dong (Energy Efficiency and Materials Research Division, Korea Institute of Energy Research) ;
  • Yoon, Dang-Hyok (School of Materials Science and Engineering, Yeungnam University)
  • Received : 2018.06.12
  • Accepted : 2018.07.19
  • Published : 2018.09.30

Abstract

This paper reports the efficacy of tape casting using an Ag-10 wt% CuO filler for the successful joining of a sintered $Ce_{0.9}Gd_{0.1}O_{2-{\delta}}-La_{0.7}Sr_{0.3}MnO_{3{\pm}{\delta}}$ (GDC-LSM) ceramic with a SUS 460 FC metal alloy by reactive air brazing. The as-prepared green tape was highly flexible without drying cracks, and the handling was easy when used as a filler material for reactive air brazing. Heat treatment for the GDC-LSM/SUS 460 FC joint was performed at $1050^{\circ}C$ for 30 min in air. Microstructural observations indicated a reliable and compact joining. The room temperature mechanical shear strength of the as-brazed joints was $60{\pm}8MPa$ with a cohesive failure. The flexural strength of joints was measured from room temperature up to $850^{\circ}C$, where the strength retention revealed to be almost 100% at $500^{\circ}C$. However, the joints showed a degradation in strengths at 800 and $850^{\circ}C$, exhibiting strength retentions of 57% and 37%, respectively.

Keywords

References

  1. J. H. Joo, K. S. Yun, J.-H. Kim, Y. Lee, J. Jung, C.-Y. Yoo, and J. H. Yu, "Substantial Oxygen Flux in Dual-Phase Membrane of Ceria and Pure Electronic Conductor by Tailoring the Surface," ACS Appl. Mater. Interface, 7 [27] 14699-707 (2015). https://doi.org/10.1021/acsami.5b03392
  2. B. T. Na, J. H. Park, J. H. Park, J. H. Yu, and J. H. Joo, "Elucidation of the Oxygen Surface Kinetics in a Coated Dual-Phase Membrane for Enhancing Oxygen Permeation Flux," ACS Appl. Mater. Interface, 9 [23] 19917-24 (2017). https://doi.org/10.1021/acsami.7b04685
  3. J. Sunarso, S. Baumann, J. M. Serra, W. A. Meulenberg, S. Liu, Y. S. Lin, and J. C. Diniz da Costa, "Mixed Ionic-Electronic Conducting (MIEC) Ceramic-Based Membranes for Oxygen Separation," J. Membr. Sci., 320 [1-2] 13-41 (2008). https://doi.org/10.1016/j.memsci.2008.03.074
  4. K. Zhang, J. Sunarso, Z. Shao, W. Zhou, C. Sun, S. Wang, and S. Liu, "Research Progress and Materials Selection Guidelines on Mixed Conducting Perovskite-Type Ceramic Membranes for Oxygen Production," RSC Adv., 1 [9] 1661-76 (2011). https://doi.org/10.1039/c1ra00419k
  5. K. S. Weil, J. Y. Kim, and J. S. Hardy, "Reactive Air Brazing: A Novel Method of Sealing SOFCs and Other Solid-State Electrochemical Devices," Electrochem. Solid-State Lett., 8 [2] A133-36 (2005). https://doi.org/10.1149/1.1850391
  6. S. Baumann, W. A. Meulenberg, and H. P. Buchkremer, "Manufacturing Strategies for Asymmetric Ceramic Membranes for Efficient Separation of Oxygen from Air," J. Eur. Ceram. Soc., 33 [7] 1251-61 (2013). https://doi.org/10.1016/j.jeurceramsoc.2012.12.005
  7. K. Raju, Muksin, S. Kim, K. Song, J. H. Yu, and D.-H. Yoon, "Joining of Metal-Ceramic Using Reactive Air Brazing for Oxygen Transport Membrane Applications," Mater. Des., 109 233-41 (2016). https://doi.org/10.1016/j.matdes.2016.07.068
  8. J. Y. Kim, J. S. Hardy, and K. S. Weil, "Dual-Atmosphere Tolerance of Ag-CuO-Based Air Braze," Int. J. Hydrogen Energy, 32 [16] 3655-63 (2007). https://doi.org/10.1016/j.ijhydene.2006.08.054
  9. J. Y. Kim, J. S. Hardy, and K. S. Weil, "Effects of CuO Content on the Wetting Behavior and Mechanical Properties of a Ag-CuO Braze for Ceramic Joining," J. Am. Ceram. Soc., 88 [9] 2521-27 (2005). https://doi.org/10.1111/j.1551-2916.2005.00492.x
  10. K. S. Weil, C. A. Coyle, J. T. Darsell, G. G. Xia, and J. S. Hardy, "Effects of Thermal Cycling and Thermal Aging on the Hermeticity and Strength of Silver-Copper Oxide Air-Brazed Seals," J. Power Sources, 152 97-104 (2005). https://doi.org/10.1016/j.jpowsour.2005.01.053
  11. J. S. Hardy, J. Y. Kim, and K. S. Weil, "Joining Mixed Conducting Oxides Using an Air-Fired Electrically Conductive Braze," J. Electrochem. Soc., 151 [8] J43-9 (2004). https://doi.org/10.1149/1.1764782
  12. V. V. Joshi, A. Meier, J. Darsell, K. S. Weil, and M. Bowden, "Trends in Wetting Behavior for Ag-CuO Braze Alloys on $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_{(3-{\delta}}$) at Elevated Temperatures in Air," J. Mater. Sci., 48 [20] 7153-61 (2013). https://doi.org/10.1007/s10853-013-7531-2
  13. H. Chen, L. Li, R. Kemps, B. Michielsen, M. Jacobs, F. Snijkers, and V. Middelkoop, "Reactive Air Brazing for Sealing Mixed Ionic Electronic Conducting Hollow Fibre Membranes," Acta Mater., 88 74-82 (2015). https://doi.org/10.1016/j.actamat.2015.01.029
  14. J. Y. Kim and K. S. Weil, "Effects of Brazing Time and Temperature on the Microstructure and Mechanical Properties of Aluminum Air Brazed Joints," J. Am. Ceram. Soc., 90 [12] 3830-37 (2007).
  15. K. Raju, Muksin, and D. H. Yoon, "Reactive Air Brazing of GDC-LSCF Ceramics Using Ag-10 wt% CuO Paste for Oxygen Transport Membrane Applications," Ceram. Int., 42 [14] 16392-95 (2016). https://doi.org/10.1016/j.ceramint.2016.07.042
  16. M. F. R. Wahid, D.-H. Yoon, K. Raju, S. Kim, K. Song, and J. H. Yu, "Interfacial Microstructure and Shear Strength of Reactive Air Brazed Oxygen Transport Membrane Ceramic-Metal Alloy Joints," Met. Mater. Int., 24 [1] 157-69 (2018). https://doi.org/10.1007/s12540-017-7160-4
  17. K. M. Erskine, A. M. Meier, and S. M. Pilgrim, "Brazing Perovskite Ceramics with Silver/Copper Oxide Braze Alloys," J. Mater. Sci., 37 [8] 1705-9 (2002). https://doi.org/10.1023/A:1014912923977
  18. A. Kaletsch, E. M. Pfaff, and C. Broeckmann, "Effect of Aging on Microstructure and Mechanical Strength of Reactive Air Brazed BSCF/AISI 314-Joints," Adv. Eng. Mater., 16 [12] 1430-36 (2014). https://doi.org/10.1002/adem.201400102
  19. K. Bobzin, M. Ote, S. Wiesner, A. Kaletsch, and C. Broeckmann, "Characterization of Reactive Air Brazed Ceramic/Metal Joints with Unadapted Thermal Expansion Behavior," Adv. Eng. Mater., 16 [12] 1490-97 (2014). https://doi.org/10.1002/adem.201400311
  20. B. Kuhna, F. J. Wetzel, J. Malzbender, R. W. Steinbrech, and L. Singheiser, "Mechanical Performance of Reactive-Air-Brazed (RAB) Ceramic/Metal Joints for Solid Oxide Fuel Cells at Ambient Temperature," J. Power Sources, 193 199-202 (2009). https://doi.org/10.1016/j.jpowsour.2008.10.117
  21. R. Kiebach, K. Engelbrecht, K. Kwok, S. Molin, M. Sogaard, P. Niehoff, F. Schulze-Kuppers, R. Kriegel, J. Kluge, and P. V. Hendriksen, "Joining of Ceramic $Ba_{0.5}Sr_{0.5}Co_{0.8}Fe_{0.2}O_3$ Membranes for Oxygen Production to High Temperature Alloys," J. Membr. Sci., 506 11-21 (2016). https://doi.org/10.1016/j.memsci.2016.01.050
  22. D. Hotza and P. Greil, "Review: Aqueous Tape Casting of Ceramic Powders," Mater. Sci. Eng. A, 202 [1-2] 206-17 (1995). https://doi.org/10.1016/0921-5093(95)09785-6
  23. M. Jabbari, R. Bulatova, A. I. Y. Tok, C. R. H. Bahl, E. Mitsoulis, and J. H. Hattel, "Ceramic Tape Casting: A Review of Current Methods and Trends with Emphasis on Rheological Behaviour and Flow Analysis," Mater. Sci. Eng. B, 212 39-61 (2016). https://doi.org/10.1016/j.mseb.2016.07.011
  24. R. K. Nishihora, P. L. Rachadel, M. G. N. Quadri, and D. Hotza, "Manufacturing Porous Ceramic Materials by Tape Casting - A Review," J. Eur. Ceram. Soc., 38 [4] 988-1001 (2018). https://doi.org/10.1016/j.jeurceramsoc.2017.11.047
  25. Z. He, K. B. Andersen, F. B. Nygaard, and K. K. Hansen, "A Combined SEM, CV and EIS Study of Multi-Layered Porous Ceramic Reactors for Flue Gas Purification," Ceram. Int., 39 [1] 847-51 (2013). https://doi.org/10.1016/j.ceramint.2012.05.097
  26. S. S. Kim, J. K. Chung, I. S. Kim, J. S. Song, C. J. Kim, and W. J. Kim, "Dielectric Properties of Ferroelectric $(Ba_{0.6}Sr_{0.4})TiO_3$ Thick Films Prepared by Tape-Casting," J. Electroceram., 17 [2-4] 451-54 (2006). https://doi.org/10.1007/s10832-006-9765-8
  27. D. Stover, H. P. Buchkremer, and S. Uhlenbruck, "Processing and Properties of the Ceramic Conductive Multilayer Device Solid Oxide Fuel Cell (SOFC)," Ceram. Int., 30 [7] 1107-13 (2004). https://doi.org/10.1016/j.ceramint.2003.12.018
  28. J. M. Serra, J. Garcia-Fayos, S. Baumann, F. Schulze-Kuppers, and W. A. Meulenberg, "Oxygen Permeation through Tape-Cast Asymmetric All-$La_{0.6}Sr_{0.4}Co_{0.2}Fe_{0.8}O_{3-{\delta}}$ Membranes," J. Membr. Sci., 447 297-305 (2013). https://doi.org/10.1016/j.memsci.2013.07.030
  29. N. C. Acikbas, E. Suvaci, and H. Mandal, "Fabrication of Functionally Graded SiAlON Ceramics by Tape Casting," J. Am. Ceram. Soc., 89 [10] 3255-57 (2006). https://doi.org/10.1111/j.1551-2916.2006.01059.x
  30. K. Lindqvist and E. Liden, "Preparation of Alumina Membranes by Tape Casting and Dip Coating," J. Eur. Ceram. Soc., 17 [2-3] 359-66 (1997). https://doi.org/10.1016/S0955-2219(96)00107-0
  31. J. S. Park, H. J. Lee, S. S. Ryu, S. M. Lee, H. J. Hwang, and Y. S. Han, "Optimization of Burnout for Reaction Bonded $Si_3N_4$ Substrate Fabrication by Tape Casting Method," J. Korean Ceram. Soc., 52 [6] 435-40 (2015). https://doi.org/10.4191/kcers.2015.52.6.435
  32. J. S. Park, S. M. Lee, Y. S. Han, H. J. Hwang, and S. S. Ryu, "Effects of Debinding Atmosphere on Properties of Sintered Reaction-Bonded $Si_3N_4$ Prepared by Tape Casting Method," J. Korean Ceram. Soc., 53 [6] 622-27 (2016). https://doi.org/10.4191/kcers.2016.53.6.622
  33. N. Straue, M. Rauscher, M. Dressler, and A. Roosen, "Tape Casting of ITO Green Tapes for Flexible Electroluminescent Lamps," J. Am. Ceram. Soc., 95 [2] 684-89 (2012). https://doi.org/10.1111/j.1551-2916.2011.04836.x
  34. H. Liang, K. Zuo, Y. Xia, D. Yao, J. Yin, and Y. Zeng, "Joining of Dense $Si_3N_4$ Ceramics with Tape Cast Lu-Al-Si-O-N Interlayer," Ceram. Int., 44 [5] 4824-28 (2018). https://doi.org/10.1016/j.ceramint.2017.12.070
  35. T. Okuni, Y. Miyamoto, H. Abe, and M. Naito, "Joining of AlN and Graphite Disks Using Interlayer Tapes by Spark Plasma Sintering," Mater. Des., 54 755-59 (2014). https://doi.org/10.1016/j.matdes.2013.09.003
  36. S. Kim, J. H. Joo, S.-D. Kim, and S.-K. Woo, "Evaluation of $CaO-Al_2O_3$ Adhesive Bonding Properties for ${\beta}^{{\prime}{\prime}}-Al_2O_3$ Solid Electrolyte Sealing for Alkali Metal Thermal Electric Converter," Ceram. Int., 39 [8] 9223-27 (2013). https://doi.org/10.1016/j.ceramint.2013.05.027

Cited by

  1. Fabrication of a kinetically sprayed CuO ultra-thin film to evaluate CO gas sensing parameters vol.43, pp.20, 2018, https://doi.org/10.1039/c9nj00289h
  2. Microstructure and Shear Strength of Brazing High Entropy TiZrHfNbMo Alloy and Si3N4 Ceramics Joints vol.11, pp.5, 2018, https://doi.org/10.3390/cryst11050472