DOI QR코드

DOI QR Code

In Vitro and Cell Imaging-Based Analysis of Protease Activity Using Nanoparticles

나노입자를 활용한 In vitro 및 세포이미징 기반 단백질분해 효소활성 분석법

  • 김계백 (한양대학교 생명과학과) ;
  • 김영필 (한양대학교 생명과학과)
  • Received : 2018.09.03
  • Accepted : 2018.09.18
  • Published : 2018.09.30

Abstract

Proteases are one of the most abundant classes of enzymes in living organisms and have been considered major targets for drug development. However, despite the ability to specifically cleave their substrates, many attempts to assay protease activity have generally relied upon the use of gel zymography or fluorophore-labeled peptide substrates, which is limited in rapid and multiplex analysis. Here we review the recent advances in nanoparticle (NP)-utilized assays of protease activity focused on in vitro and cell imaging-based approaches. Owing to large surface area and unprecedented physical properties of NPs, these approaches are anticipated to facilitate many applications related to protease activity-based disease diagnosis and drug discovery.

Keywords

References

  1. a) A. Radzicka, R. Wolfenden, Science 1995, 267, 90-93 https://doi.org/10.1126/science.7809611
  2. b) D. Dunaway- Mariano, Structure 2008, 16, 1599-1600 https://doi.org/10.1016/j.str.2008.10.001
  3. c) O. Khersonsky, D. S. Tawfik, Annu. Rev. Biochem. 2010, 79, 471 - 505 https://doi.org/10.1146/annurev-biochem-030409-143718
  4. a) T. K. Harris, M. M. Keshwani, Methods Enzymol. 2009, 463, 57 - 71
  5. b) K.Yu, S. Hu, J. Huang, L. H. Mei, Enzyme Microb. Technol. 2011, 49, 272 - 276 https://doi.org/10.1016/j.enzmictec.2011.06.007
  6. c) M. A. Sentandreu, F. Toldra, Nat. Protoc. 2006, 1, 2423 - 2427 https://doi.org/10.1038/nprot.2006.349
  7. d) M. Maeda, H. Arakawa, A. Tsuji, J. Biolumin. Chemilumin. 1989, 4, 140-148. https://doi.org/10.1002/bio.1170040121
  8. a) E. C. Wang, A. Z. Wang, Integr. Biol. 2014, 6, 9 - 26 https://doi.org/10.1039/c3ib40165k
  9. b) S. S. Agasti, S. Rana, M. H. Park, C. K. Kim, C. C. You, V. M. Rotello, Adv. Drug Delivery Rev. 2010, 62, 316 - 328 https://doi.org/10.1016/j.addr.2009.11.004
  10. c) M. De, P. S. Ghosh, V. M. Rotello, Adv. Mater. 2008, 20, 4225-4241 https://doi.org/10.1002/adma.200703183
  11. d) N. C. Tansil, Z. Q. Gao, Nano Today 2006, 1, 28-37.
  12. a) R. A. Sperling, P. Rivera Gil, F. Zhang, M. Zanella, W. J. Parak, Chem. Soc. Rev. 2008, 37, 1896 - 1908 https://doi.org/10.1039/b712170a
  13. b) M. Shah, V. D. Badwaik, R. Dakshinamurthy, J. Nanosci. Nanotechnol. 2014, 14, 344 - 362 https://doi.org/10.1166/jnn.2014.8900
  14. c) M. C. Daniel, D. Astruc, Chem. Rev. 2004, 104, 293 - 346 https://doi.org/10.1021/cr030698+
  15. d) K. Saha, S. S. Agasti, C. Kim, X. Li, V. M. Rotello, Chem. Rev. 2012, 112, 2739 - 2779. https://doi.org/10.1021/cr2001178
  16. E. Hutter, D. Maysinger, Trends Pharmacol. Sci. 2013, 34, 497-507 https://doi.org/10.1016/j.tips.2013.07.002
  17. a) D. Vilela, M. C. Gonzalez, A. Escarpa, Anal. Chim. Acta 2012, 751, 24 - 43 https://doi.org/10.1016/j.aca.2012.08.043
  18. b) W. Zhao, M. A. Brook, Y. Li, ChemBioChem 2008, 9, 2363-2371. https://doi.org/10.1002/cbic.200800282
  19. a) G. Doria, J. Conde, B. Veigas, L. Giestas, C. Almeida, M. Assuncao, J. Rosa, P. V. Baptista,Sensors 2012, 12, 1657 - 1687 https://doi.org/10.3390/s120201657
  20. b) J. N. Anker, W. P. Hall, O. Lyandres, N. C. Shah, J. Zhao, R. P. Van Duyne, Nat. Mater. 2008, 7, 442 - 453 https://doi.org/10.1038/nmat2162
  21. c) P. D. Howes, R. Chandrawati, M. M. Stevens, Science 2014, 346, 53-63.
  22. a) R. Elghanian, J. J. Storhoff, R. C. Mucic, R. L. Letsinger, C. A. Mirkin, Science 1997, 277, 1078 - 1081 https://doi.org/10.1126/science.277.5329.1078
  23. b) N. L. Rosi, C. A. Mirkin, Chem. Rev. 2005, 105, 1547 - 1562 https://doi.org/10.1021/cr030067f
  24. c) J. E. Lee, J. H. Kim, S. H. Lee, J. Y. Kim, S. J. Mah, M. B. Gu, Biochip J. 2013, 7, 180 - 187. https://doi.org/10.1007/s13206-013-7212-x
  25. G. B. Kim, K. H. Kim, Y. H. Park, S. Ko, Y. P. Kim, Biosens. Bioelectron. 2013, 41, 833 - 839 https://doi.org/10.1016/j.bios.2012.10.025
  26. a) N. J. Ronkainen, H. B. Halsall, W. R. Heineman, Chem. Soc. Rev. 2010, 39, 1747 - 1763 https://doi.org/10.1039/b714449k
  27. b) D. Wei, M. J. Bailey, P. Andrew, T. Ryhanen, Lab Chip 2009, 9, 2123 - 2131. https://doi.org/10.1039/b903118a
  28. M. A. Roberts, S. O. Kelly, J. Am. Chem. Soc. 2007, 129, 11356-11357. https://doi.org/10.1021/ja074546y
  29. a) B. Dubertret, M. Calame, A. J. Libchaber, Nat. Biotechnol. 2001, 19, 680 - 681 https://doi.org/10.1038/90301
  30. b) E. Dulkeith, A. C. Morteani, T. Niedereichholz, T. A. Klar, J. Feldmann, S. A. Levi, F. C. J. M. van Veggel, D. N. Reinhoudt, M. Moller, D. I. Gittins, Phys. Rev. Lett. 2002, 89, 203002 https://doi.org/10.1103/PhysRevLett.89.203002
  31. c) D. J. Maxwell, J. R. Taylor, S. M. Nie, J. Am. Chem. Soc. 2002, 124, 9606 - 9612 https://doi.org/10.1021/ja025814p
  32. d) U. H. F. Bunz, V. M. Rotello, Angew. Chem. Int. Ed. 2010, 49, 3268 - 3279; Angew. Chem. 2010, 122, 3338 - 3350 https://doi.org/10.1002/anie.200906928
  33. e) G. P. Acuna, M. Bucher, I. H. Stein, C. Steinhauer, A. Kuzyk, P. Holzmeister, R. Schreiber, A. Moroz, F. D. Stefani, T. Liedl, F. C. Simmel, P. Tinnefeld, ACS Nano 2012, 6, 3189 - 3195. https://doi.org/10.1021/nn2050483
  34. a) T. Sen, S. Sadhu, A. Patra, Appl. Phys. Lett. 2007, 91, 043104 https://doi.org/10.1063/1.2762283
  35. b) C. S. Yun, A. Javier, T. Jennings, M. Fisher, S. Hira, S. Peterson, B. Hopkins, N. O. Reich, G. F. Strouse, J. Am. Chem. Soc. 2005, 127, 3115 - 3119 https://doi.org/10.1021/ja043940i
  36. c) E. Oh, M. Y. Hong, D. Lee, S. H. Nam, H. C. Yoon, H. S. Kim, J. Am. Chem. Soc. 2005, 127, 3270 - 3271 https://doi.org/10.1021/ja0433323
  37. d) T. L. Jennings, M. P. Singh, G. F. Strouse, J. Am. Chem. Soc. 2006, 128, 5462 - 5467. https://doi.org/10.1021/ja0583665
  38. a) J. H. Kim, R. A. Estabrook, G. Braun, B. R. Lee, N. O. Reich, Chem. Commun. 2007, 4342 - 4344
  39. b) J. M. Obliosca, P. C. Wang, F. G. Tseng, J. Colloid Interface Sci. 2012, 371, 34 - 41 https://doi.org/10.1016/j.jcis.2011.12.026
  40. c) W. J. Wang, C. L. Chen, M. X. Qian, X. S. Zhao, Anal. Biochem. 2008, 373, 213 - 219 https://doi.org/10.1016/j.ab.2007.11.013
  41. d) Y. P. Kim, Y. H. Oh, H. S. Kim, Biosens. Bioelectron. 2008, 23, 980 - 986 https://doi.org/10.1016/j.bios.2007.10.001
  42. e) S. Mayilo, M. A. Kloster, M. Wunderlich, A. Lutich, T. A. Klar, A. Nichtl, K. Kurzinger, F. D. Stefani, J. Feldmann, Nano Lett. 2009, 9, 4558 - 4563 https://doi.org/10.1021/nl903178n
  43. f) B. S. S. Guirgis, C. S. E. Cunha, I. Gomes, M. Cavadas, I. Silva, G. Doria, G. L. Blatch, P. V. Baptista, E. Pereira, H. M. E. Azzazy, M. M. Mota, M. Prudencio, R. Franco, Anal. Bioanal. Chem. 2012, 402, 1019 - 1027 https://doi.org/10.1007/s00216-011-5489-y
  44. g) P. P. Hu, L. Q. Chen, C. Liu, S. J. Zhen, S. J. Xiao, L. Peng, Y. F. Li, C. Z. Huang, Chem. Commun. 2010, 46, 8285 - 8287. https://doi.org/10.1039/c0cc02600j
  45. a) H. Lee, K. Lee, I. K. Kim, T. G. Park, Biomaterials 2008, 29, 4709 - 4718 https://doi.org/10.1016/j.biomaterials.2008.08.038
  46. b) W. Y. Chen, G. Y. Lan, H. T. Chang, Anal. Chem. 2011, 83, 9450 - 9455 https://doi.org/10.1021/ac202162u
  47. c) L. H. Jin, L. Shang, S. J. Guo, Y. X. Fang, D. Wen, L. Wang, J. Y. Yin, S. J. Dong, Biosens. Bioelectron. 2011, 26, 1965 - 1969. https://doi.org/10.1016/j.bios.2010.08.019
  48. S. Y. Park, S. M. Lee, G. B. Kim, Y. P. Kim, Gold Bull. 2012, 45, 213 - 219. https://doi.org/10.1007/s13404-012-0070-9
  49. Y. P. Kim, W. L. Daniel, Z. Y. Xia, H. X. Xie, C. A. Mirkin, J. H. Rao, Chem. Commun. 2010, 46, 76-78. https://doi.org/10.1039/B915612G
  50. a) P. L. Stiles, J. A. Dieringer, N. C. Shah, R. P. Van Duyne, Annu. Rev. Anal. Chem. 2008, 1, 601 - 626 https://doi.org/10.1146/annurev.anchem.1.031207.112814
  51. b) S. E. Bell, N. M. Sirimuthu, Chem. Soc. Rev. 2008, 37, 1012 - 1024 https://doi.org/10.1039/b705965p
  52. c) S. Schlìcker, Angew. Chem. Int. Ed. 2014, 53, 4756 - 4795; Angew. Chem. 2014, 126, 4852 - 4894. https://doi.org/10.1002/anie.201205748
  53. a) B. D. Moore, L. Stevenson, A. Watt, S. Flitsch, N. J. Turner, C. Cassidy, D. Graham, Nat. Biotechnol. 2004, 22, 1133 - 1138 https://doi.org/10.1038/nbt1003
  54. b) R. Stevenson, S. McAughtrie, L. Senior, R. J. Stokes, H. McGachy, L. Tetley, P. Nativo, J. M. Brewer, J. Alexander, K. Faulds, D. Graham, Analyst 2013, 138, 6331 - 6336 https://doi.org/10.1039/c3an00729d
  55. c) N. N. Yazgan, I. H. Boyaci, E. Temur, U. Tamer, A. Topcu, Talanta 2010, 82, 631 - 639. https://doi.org/10.1016/j.talanta.2010.05.023
  56. Z. T. Wu, Y. F. Liu, Y. Z. Liu, H. M. Xiao, A. G. Shen, X. D. Zhou, J. M. Hu, Biosens. Bioelectron. 2015, 65, 375 - 381. https://doi.org/10.1016/j.bios.2014.10.065
  57. X. Y. Wan, L. L. Zheng, P. F. Gao, X. X. Yang, C. M. Li, Y. F. Li, C. Z. Huang, Sci. Rep. 2014, 4, 4529
  58. P. L. Truong, X. Ma, S. J. Sim, Nanoscale 2014, 6, 2307 - 2315. https://doi.org/10.1039/c3nr05211g
  59. Y. W. Jun, S. Sheikholeslami, D. R. Hostetter, C. Tajon, C. S. Craik, A. P. Alivisatos, Proc. Natl. Acad. Sci. USA 2009, 106, 17735 - 17740. https://doi.org/10.1073/pnas.0907367106
  60. a) W. C. W. Chan, D. J. Maxwell, X. H. Gao, R. E. Bailey, M. Y. Han, S. M. Nie, Curr. Opin. Biotechnol. 2002, 13, 40 - 46 https://doi.org/10.1016/S0958-1669(02)00282-3
  61. b) X. Y. Wu, H. J. Liu, J. Q. Liu, K. N. Haley, J. A. Treadway, J. P. Larson, N. F. Ge, F. Peale, M. P. Bruchez, Nat. Biotechnol. 2003, 21, 452 - 452
  62. c) J. K. Jaiswal, H. Mattoussi, J. M. Mauro, S. M. Simon, Nat. Biotechnol. 2002, 21, 47 - 51
  63. d) P. Hawrylak, G. A. Narvaez, M. Bayer, A. Forchel, Phys. Rev. Lett. 2000, 85, 389 - 392 https://doi.org/10.1103/PhysRevLett.85.389
  64. e) I. Moreels, Z. Hens, Small 2008, 4, 1866 - 1868 https://doi.org/10.1002/smll.200800068
  65. f) X. Gao, Y. Cui, R. M. Levenson, L. W. Chung, S. Nie, Nat. Biotechnol. 2004, 22, 969 - 976. https://doi.org/10.1038/nbt994
  66. a) A. R. Clapp, I. L. Medintz, J. M. Mauro, B. R. Fisher, M. G. Bawendi, H. Mattoussi, J. Am. Chem. Soc. 2004, 126, 301 - 310 https://doi.org/10.1021/ja037088b
  67. b) C. Y. Zhang, H. C. Yeh, M. T. Kuroki, T. H. Wang, Nat. Mater. 2005, 4, 826 - 831 https://doi.org/10.1038/nmat1508
  68. c) I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, J. M. Mauro, Nat. Mater. 2003, 2, 630 - 638 https://doi.org/10.1038/nmat961
  69. d) J. M. Mauro, I. L. Medintz, A. R. Clapp, H. Mattoussi, E. R. Goldman, B. Fisher, Nat. Mater. 2003, 2, 630 - 638 https://doi.org/10.1038/nmat961
  70. e) S. P. Wang, N. Mamedova, N. A. Kotov, W. Chen, J. Studer, Nano Lett. 2002, 2, 817 - 822 https://doi.org/10.1021/nl0255193
  71. I. L. Medintz, A. R. Clapp, F. M. Brunel, T. Tiefenbrunn, H. T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, H. Mattoussi, Nat. Mater. 2006, 5, 581 - 589. https://doi.org/10.1038/nmat1676
  72. J. E. Ghadiali, S. B. Lowe, M. M. Stevens, Angew. Chem. Int. Ed. 2011, 50, 3417 - 3420; Angew. Chem. Int. Ed. 2011, 123, 3479 - 3482. https://doi.org/10.1002/anie.201008263
  73. I. L. Medintz, A.R. Clapp, F. M. Brunel, T. Tiefenbrunn, T. Uyeda, E. L. Chang, J. R. Deschamps, P. E. Dawson, H. Mattoussi Nat. Mater. 2006, 5, 581-589. https://doi.org/10.1038/nmat1676
  74. M. Suzuki, Y. Husimi, H. Komatsu, K. Suzuki, K. T. Douglas, J. Am. Chem. Soc. 2008, 130, 5720 - 5725. https://doi.org/10.1021/ja710870e
  75. M. Wu, W. R. Algar, Anal. Chem. 2015, 87, 8078 - 8083. https://doi.org/10.1021/acs.analchem.5b01946
  76. Y. P. Kim, Y. H. Oh, E. Oh, S. Ko, M. K. Han, H. S. Kim Anal. Chem. 2008, 80, 4634-4641 https://doi.org/10.1021/ac702416e
  77. D. Sivakumar, K. C. B. Naidu, K. P. Nazeer, M. M. Rafi, G. Ramesh kumar, B. Sathyaseelan, G. Killivalavan, A. A. Begam, J. Korean Ceram. Soc. 2018, 55, 230-238 https://doi.org/10.4191/kcers.2018.55.3.02
  78. R. A. Frimpong, J. Z. Hilt, Nanomedicine 2010, 5, 1401 - 1414. https://doi.org/10.2217/nnm.10.114
  79. J. E. Ghadiali, S. B. Lowe, M. M. Stevens, Angew. Chem. Int. Ed. 2011, 50, 3417 - 3420; Angew. Chem. Int. Ed. 2011, 123, 3479 - 3482. https://doi.org/10.1002/anie.201008263
  80. T. J. Harris, G. von Maltzahn, A. M. Derfus, E. Ruoslahti, S. N. Bhatia, Angew. Chem. Int. Ed. 2006, 45, 3161 - 3165; Angew. Chem. Int. Ed. 2006, 118, 3233 - 3237. https://doi.org/10.1002/anie.200600259