DOI QR코드

DOI QR Code

수량예측을 위한 'Cupra', 'Fiesta' 파프리카의 생육특성 및 수확량 패턴 분석

Analysis of Growth Characteristics and Yield Pattern of 'Cupra' and 'Fiesta' Paprika for Yield Prediction

  • Joung, Kyong Hee (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Jin, Hy Jeong (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • An, Jae Uk (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Yoon, Hae Suk (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Oh, Sang Suk (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Lim, Chae Shin (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Um, Yeong Cheol (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Kim, Hee Dae (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Hong, Kwang Pyo (Horticultural Research Division, Gyeongsangnam-do Agricultural Research & Extension Services) ;
  • Park, Seong Min (Geochang Paprika Agricultural Aassociation Corporation)
  • 투고 : 2018.08.31
  • 심사 : 2018.10.14
  • 발행 : 2018.10.30

초록

파프리카 수확량 예측을 위한 목적으로 온실 환경과 작물의 생육 특성 및 수확량 패턴을 조사 분석하였다. 경남거창 지역(해발고도 667m)의 유리온실에서 적색계 파프리카 'Cupra'와 황색계 파프리카 'Fiesta'를 2016년 7월 5일 파종하고, 35일 후인 8월 10일 정식하여 2017년 7월 15일까지 재배하였다. 재식밀도는 두 품종 동일하게 $3.66plants/m^2$로 2줄기로 유인하였다. 정식 후 재배기간 동안 시설의 외부 평균 광량은 $14.36MJ/m^2/day$였고, 온실 내부의 관리에서 24시간 평균온도 $20{\sim}22^{\circ}C$, $CO_2$ 400~700ppm, 24시간 평균 습도 60~75% 수준으로 유지하고자 하였다. 정식 42주 후까지 신장속도는 'Cupra'가 7.3cm/week, 'Fiesta'가 6.9cm/week로 'Cupra'가 빨랐다. 첫 착과는 'Cupra'가 1.0마디, 'Fiesta'는 2.7마디에서 나타났으며, 첫 수확은 정식 후 'Cupra'가 14주, 'Fiesta'가 11주로 'Fiesta'가 빨랐다. 재배 종료 시까지의 10a당 수확량을 비교해 보면, 'Fiesta'가 18,848kg, 'Cupra'가 19,307kg로 'Fiesta'가 2.4% 높게 나타났으며, L 사이즈인 200g 이상의 과중 비율은 'Cupra'가 27.7%로 'Fiesta'보다 7.7%로 높았다. 6월까지의 수확량에서, 착과에서 수확까지의 평균 소요일수는 'Cupra'가 72.6일, 'Fiesta'가 63.8일로 'Cupra'가 8.8일이 더 소요되었다. 수확소요일수와 그 기간 누적된 광량과의 관계를 보면, 광량이 증가하는 2월 이후 두 품종 모두 누적광이 많을수록 수확소요일수는 짧아지는 부의 관계를 나타냈다. 1월에 가장 긴 소요일수가 요구되었는데, 이는 낮은 광량으로 생육과 착색이 지연되어 소요일수가 늘어난 것으로 판단된다. 수확량과의 관계에서는 'Cupra'는 광량이 증가됨에 따라 수확량이 증가되는 반면, 'Fiesta'는 불규칙적인 패턴을 보여 품종간의 차이를 보였다.

This study was aimed at predicting the yield of paprika (Capsicum annuum L.) through analyzing the growth characteristics, yield pattern and greenhouse environment. In the greenhouse of the Gyeongnam area (667 m above sea level), the red paprika 'Cupra' and the yellow paprika 'Fiesta' were grown from July 5, 2016 to July 15, 2017. The planting density was $3.66plants/m^2$ and attracted 2 stems. During the cultivation period, the average external radiation of the glasshouse was $14.36MJ/m^2/day$ and the internal average temperature was controlled as $20.1^{\circ}C$. After 42 weeks of planting, the growth rate of 'Cupra' was 7.3 cm/week and that of 'Fiesta' was 6.9 cm/week. The first fruit setting of 'Cupra' appeared at 1.0th node and 'Fiesta' at 2.7th node. The first harvest of 'Fiesta' was 11 weeks after planting and 'Fiesta' was 14 weeks. Comparing the yield per 10 a until the end of the cultivation in July, 'Fiesta' was 19,307 kg, which was 2.4% higher than that of 'Cupra'. And the fruit weight ratio of over 200 g of 'Cupra' was 27.7% which was 7.7% higher than that of 'Fiesta'. The average required days to harvest after fruit setting of 'Cupra' was 72.6 days and 'Fiesta' was 63.8 days. According to the relationship between the average required days to harvest and the cumulative radiation (during from fruit setting to harvest), the more radiation increases the less required days to harvest increases after February. In terms of yield, 'Cupra' increased in yield as the cumulative radiation increased, while 'Fiesta' showed an irregular pattern. Cumulative radiation from fruit setting to harvest was negatively correlated with required days to harvest after February in both cultivars. But in relation to yield, there were difference between 'Cupra' and 'Fiesta'.

키워드

참고문헌

  1. Ahn, J. and H. Lee, 2015. Smart farm using IoT that change the lives of rural people. Planning and Policy. 5:19-26 (in Korean).
  2. Heuvelink, E. and H. Challa. 1989. Dynamic optimization of artificial lighting in greenhouse. Acta Hort. 206:401-402.
  3. Heuvelink, E., L.F.M. Marcelis, and O. Korner. 2004. How to reduce yield fluctuations in sweet pepper. Acta. Hort. 633:649-355.
  4. Jang D.C., K.Y. Choi, J.Y. Heo, and I.S. Kim. 2016. Comparison of growth and fruit setting characteristics for selecting the optimum winter-planted paprika cultivars. Kor. J. Hort. Sci. Technol. 34:424-432 (in Korean).
  5. Jeong E.M., W.T. Kim, S.R. Kim, and S.H. Yun. 2008. The state and urgent problem of sweet pepper in Korea. Korea Rural Economy Institute, Seoul, Korea (in Korean).
  6. Jeong W.J., D.J. Myoung and J.H. Lee. 2009a. Comparison of climatic conditions of sweet pepper's greenhouse between Korea and the Netherlands. Journal of Bio-Environment Control. 18:244-252 (in Korean).
  7. Jeong W.J., J.H. Lee, H.C. Kim, and J.H. Bae. 2009b. Dry matter production, distribution and yield of sweet pepper grown under glasshouse and plastic greenhouse in Korea. Journal of Bio-Environment Control. 18:258-265 (in Korean).
  8. Kati. 2016. Domestic production trends and future prospects of current industrial trend in paprika, Company report, Korea Agrcultural Trade Information, Korea (in Korean).
  9. Kim H.C., Y.G. Ku, J.H. Lee, J.G. Kang, and J.H. Bae. 2012. Comparison plant growth and fruit setting among sweet pepper cultivars of red line. Journal of Bio-Environment Control. 21:247-251 (in Korean).
  10. Lee J.N., K.Y. Shin, J.O. Lee, U.H. Lee, and Y.S. Kwon. 2001. Selection of paprika varieties suitable for soil-culture under rain-shelter in highland. Horticulture Environment and Biotechnology. 42:163-166 (in Korean).
  11. Lee J.H., and J.C. Cha. 2009. Effects of removed flowers on dry mass production and photosynthetic efficiency of sweet pepper cultivars 'Derby' and 'Cupra'. Kor. J. Hort. Sci. Technol. 27:584-590 (in Korean).
  12. Myung D.J., J.H. Bae, J.G. Kang, and J.H. Lee. 2012. Relationship between radiation and yield of sweet pepper cultivars. Journal of Bio-Environment Control. 21: 243-246 (in Korean).
  13. Na M.H., Y.H. Park, and W.H. Cho. 2017. A study on optimal environmental factors of tomato using smart farm data. Journal of the Korean Data And Information Science Society. 28:1427-1435 (in Korean).
  14. Park S.M., H.C. Kim, Y.G. Ku, S.W. Kim, and J.H. Bae. 2012. Relation between temperature and growth of sweet pepper by growing areas in greenhouse. Kor. J. Hort. Sci. Technol. 30:680-685 (in Korean).
  15. Rylski, I. and M. Spigelman. 1982. Effects of different diurnal temperature combinations on fruit set of sweet pepper. Sci. Hort. 17:101-106. https://doi.org/10.1016/0304-4238(82)90001-2
  16. Um Y.C., C.S. Choi1, T.C. Seo, J.G. Lee, Y.A. Jang, S.G. Lee, S.S. O, and H.J. Lee. 2013. Comparison of growth characteristics and yield by sweet pepper varieties at glass greenhouse in reclaimed land and farms. Journal of Agriculture & Life Science 47:33-41 (in Korean). https://doi.org/10.14397/jals.2013.47.6.33
  17. Won J.H., B.C. Jeong, J.K. Kim, and S.J. Jeon. 2009. Selection of suitable cultivars for the hydroponics of sweet pepper (Capsicum annuum L.) in the alpine area in summer. Journal of Bio-Environment Control.18:425-430 (in Korean).