FOURTH HANKEL DETERMINANT FOR THE FAMILY OF FUNCTIONS WITH BOUNDED TURNING

MUHAMMAD ARIF, LUBNA RANI, MOHSAN RAZA, AND PAWEL ZAPRAWA

Abstract. The main aim of this paper is to study the fourth Hankel determinant for the class of functions with bounded turning. We also investigate for 2-fold symmetric and 3-fold symmetric functions.

1. Introduction and definitions

Let \mathcal{A} denote the family of all functions f that are analytic in the open unit disc $D = \{ z \in \mathbb{C} : |z| < 1 \}$ having the Taylor series expansions

$$f(z) = z + \sum_{n=2}^{\infty} a_n z^n \quad (z \in D),$$

while S represents a family of functions $f \in \mathcal{A}$ that are univalent in D. Let S^*, C and R denote the classes of starlike, convex and bounded turning functions respectively and are defined as:

$$S^* = \left\{ f : f \in \mathcal{A} \text{ and } \Re \left(\frac{zf'(z)}{f(z)} \right) > 0, \quad z \in D \right\},$$

$$C = \left\{ f : f \in \mathcal{A} \text{ and } \Re \left(1 + \frac{zf''(z)}{f'(z)} \right) > 0, \quad z \in D \right\},$$

and

$$R = \left\{ f : f \in \mathcal{A} \text{ and } \Re (f'(z)) > 0, \quad z \in D \right\}.$$

Let P denote the family of all analytic functions p of the form

$$p(z) = 1 + \sum_{n=1}^{\infty} c_n z^n,$$

in D whose real parts are positive in D. It is known that the nth coefficient for the functions belong to the family S^*, is bounded by n and this bound helps to study its geometric properties. In particular, the growth and distortion...
properties of a normalized univalent function \(f \in S \) are determined by the bound of its second coefficient.

The Hankel determinant \(H_{q,n}(f) \) \((q, n \in \mathbb{N} = \{1, 2, \ldots \}) \) for a function \(f \in S \) of the form (1.1) was defined by Pommerenke [21, 22], (see also [2, 3]) as

\[
H_{q,n}(f) := \begin{vmatrix}
 a_n & a_{n+1} & \ldots & a_{n+q-1} \\
 a_{n+1} & a_{n+2} & \ldots & a_{n+q} \\
 \vdots & \vdots & \ddots & \vdots \\
 a_{n+q-1} & a_{n+q} & \cdots & a_{n+2q-2}
\end{vmatrix}.
\]

(1.3)

For fixed integer \(q \) and \(n \), the growth of \(H_{q,n}(f) \) has been studied for different subfamilies of univalent functions. We include here a few of them. The sharp bounds of \(|H_{2,2}(f)|\) for the subfamilies \(S^* \), \(C \) and \(R \) of the set \(S \) were investigated by Janteng et al. [10, 11]. They proved the bounds

\[
|H_{2,2}(f)| \leq \begin{cases}
1 & \text{for } f \in S^*, \\
\frac{1}{8} & \text{for } f \in C, \\
\frac{4}{9} & \text{for } f \in R.
\end{cases}
\]

For the family of Bazilevič functions, the exact estimate of \(|H_{2,2}(f)|\) was obtained by Krishna et al. [13]. For more works on \(H_{2,2}(f) \) for subfamilies of \(S \) see the references [5, 9, 12, 14, 17, 19, 20].

Unfortunately, the sharp bound of \(|H_{2,2}(f)|\) for the whole class \(S \) is still not known. In [26], Thomas conjectured that if \(f \in S \), then \(|H_{2,2}(f)| \leq 1\). As it was shown by Li and Srivastava in [15], this conjecture is not true for \(n \geq 4 \). Similarly, Răducanu and Zaprawa in [23] proved that it is also false for \(n = 2 \). In fact, they showed that \(\max\{|H_{2,2}(f)| : f \in S\} \geq 1.175 \ldots \).

The estimation of \(|H_{3,1}(f)|\) is much more difficult than the case of \(|H_{2,2}(f)|\). The first paper on \(H_{3,1}(f) \) appears in 2010 by Babalola [4] in which he obtained the upper bound of \(H_{3,1}(f) \) for the families of \(S^* \), \(C \) and \(R \). Later on some other authors [1, 6, 8, 24, 25, 27] published their works concerning \(|H_{3,1}(f)|\) for different subfamilies of analytic and univalent functions. Recently in 2016, Zaprawa [28] improved the results of Babalola [4] by proving

\[
|H_{3,1}(f)| \leq \begin{cases}
1 & \text{for } f \in S^*, \\
\frac{49}{450} & \text{for } f \in C, \\
\frac{41}{60} & \text{for } f \in R,
\end{cases}
\]

and claimed that these bounds are still not sharp. Further for the sharpness, he considered the subfamilies of \(S^* \), \(C \) and \(R \) consisting of functions with \(m \)-fold symmetry and obtained the sharp bounds. In this paper, we contribute to the fourth Hankel determinant for the class of functions with positive real part.

2. A set of lemmas

In order to find the bound of the fourth Hankel determinant, we need the following sharp estimates for the class \(S^* \) of starlike functions and \(P \) of functions with positive real part.
Lemma 2.1. If \(p \in P \), then, for \(n, k \in \mathbb{N} = \{1, 2, \ldots \} \), the following sharp inequalities hold

\[
|c_{n+k} - \lambda c_n c_k| \leq 2 \quad \text{for } 0 \leq \lambda \leq 1, \tag{2.1}
\]

\[
|c_n| \leq 2. \tag{2.2}
\]

The inequalities (2.1) and (2.2) are proved in [7] and [18] respectively.

Lemma 2.2. Let \(p \in P \) of the form (1.2). Then

\[
2c_2 = c_1^2 + x (4 - c_1^2)
\]

for some \(x \) with \(|x| \leq 1 \).

This result is due to Libera and Zlotkiewicz [16].

Let \(g \in S^* \) of the form

\[
g(z) = z + \sum_{n=2}^{\infty} b_n z^n \quad (z \in \mathbb{D}). \tag{2.3}
\]

Then for the real number \(\lambda \), consider the functional

\[
\Phi_g(\lambda) = |b_2^2 (b_3 - \lambda b_2^2)|.
\]

Now we prove the upper bound of \(\Phi_g(\lambda) \) as follows.

Theorem 2.3. Let \(g \in S^* \) of the form (2.3). Then

\[
\Phi_g(\lambda) \leq \begin{cases}
4 (3 - 4\lambda), & \lambda \leq 5/8, \\
\frac{10}{(1 - \lambda)}, & \lambda \in [5/8, 3/4], \\
\frac{4 (1 - \lambda)}, & \lambda \in [3/4, 7/8], \\
\frac{4 (4\lambda - 3)}, & \lambda \geq 7/8.
\end{cases}
\]

Proof. Let \(g \in S^* \) of the form (2.3). Then

\[
\frac{z g'(z)}{g(z)} = p(z),
\]

where \(p \) is in class \(P \) of functions with positive real part. Then it is easy to see that

\[
b_2 = c_1, \quad 2b_3 = c_2 + c_1^2.
\]

Hence by applying Lemma 2.2, and the above relations, we get

\[
\Phi_g(\lambda) = \frac{1}{4} |c_1^2 [x (4 - c_1^2) + (3 - 4\lambda) c_1^2]|
\]

for some \(x \) such that \(|x| \leq 1 \). Taking into account of the invariance of \(\Phi_g \) under rotation, we may assume that \(c_1 \) is a non negative real number such that \(c_1 = 2r, r \in [0, 1] \). Therefore

\[
\Phi_g(\lambda) = 4r^2 |(1 - r^2) x + (3 - 4\lambda) r^2|.
\]

1. Now we suppose that \(\lambda \leq 3/4 \). Then

\[
\Phi_g(\lambda) \leq 4r^2 [2 (1 - 2\lambda) r^2 + 1].
\]
Let \(q_1 (r) = 4r^2 \left[2 (1 - 2\lambda) r^2 + 1 \right] \). Then for \(\lambda \leq 1/2 \) and \(r \in [0, 1] \), \(q_1 (r) \) is an increasing function. Hence \(q_1 (r) \leq q_1 (1) \). For \(\lambda \in (1/2, 3/4] \), we have

\[
q_1 (r) \leq \begin{cases}
q_1 (1), & \lambda \in (1/2, 5/8], \\
q_1 \left(1/\sqrt{4(2\lambda - 1)}\right), & \lambda \in [5/8, 3/4].
\end{cases}
\]

2. For the case \(\lambda \geq 3/4 \), we have

\[
\Phi_3 (\lambda) \leq 4r^2 \left[4 (\lambda - 1) r^2 + 1 \right].
\]

Again, letting \(q_2 (r) = 4r^2 [4 (\lambda - 1) r^2 + 1] \) and using similar arguments, we have

\[
q_2 (r) \leq \begin{cases}
q_2 \left(1/\sqrt{8(1-\lambda)}\right), & \lambda \in [3/4, 7/8], \\
q_2 (1), & \lambda \geq 7/8.
\end{cases}
\]

Hence, we have the required result.

3. Bounds of \(|H_{4,1} (f)|\) for the set \(\mathcal{R} \)

First, for any \(f \in \mathcal{A} \) of the form (1.1), we can write \(H_{4,1} (f) \) in the form

\[
H_{4,1} (f) := a_7 H_3 (1) - a_6 \Delta_1 + a_5 \Delta_2 - a_4 \Delta_3,
\]

where \(\Delta_1, \Delta_2 \) and \(\Delta_3 \) are determinants of order 3 given by

\[
\Delta_1 = (a_3 a_6 - a_4 a_5) - a_2 (a_2 a_6 - a_3 a_5) + a_4 (a_2 a_4 - a_3^2),
\]

\[
\Delta_2 = (a a_6 - a_2^2) - a_2 (a a_6 - a_4 a_5) + a_3 (a_3 a_5 - a_2^2),
\]

\[
\Delta_3 = a_2 (a_4 a_6 - a_2^2) - a_3 (a_3 a_6 - a_4 a_5) + a_4 (a_3 a_5 - a_4^2).
\]

From (1.3), we observe that \(H_{4,1} (f) \) is a polynomial of six successive coefficients \(a_2, a_3, a_4, a_5, a_6 \) and \(a_7 \) of a function \(f \) in a given class. However, in many problems these coefficients are connected to the coefficients of the function \(p \) in the set \(\mathcal{P} \).

Assume now that \(f \in \mathcal{R} \). We have

\[
f'(z) = p(z),
\]

where \(p \in \mathcal{P} \) of the form (1.2). From (3.5), we can easily obtain

\[
a_{n-1} = c_n.
\]

Using (3.6) in (3.2), (3.3) and (3.4), it follows that

\[
\Delta_1 = \frac{1}{18} c_2 c_5 - \frac{1}{20} c_3 c_4 - \frac{1}{24} c_2^2 c_3 + \frac{1}{36} c_1 c_2 c_4 + \frac{1}{32} c_1^2 c_3 - \frac{1}{36} c_2 c_3^2,
\]

\[
\Delta_2 = \frac{1}{24} c_3 c_5 - \frac{1}{25} c_4 c_4 + \frac{1}{40} c_1 c_3 c_4 - \frac{1}{36} c_1 c_2 c_5 + \frac{1}{45} c_2 c_4 - \frac{1}{48} c_2 c_3^2,
\]

\[
\Delta_3 = \frac{1}{48} c_1 c_3 c_5 - \frac{1}{50} c_1 c_3^2 + \frac{1}{30} c_2 c_3 c_4 - \frac{1}{64} c_3^3 - \frac{1}{54} c_2 c_5.
\]

Now we can prove our main result.
Theorem 3.1. If \(f \in \mathcal{R} \), then
\[
|H_{4,1}(f)| \leq \frac{73757}{94500} \approx 0.78050.
\]

Proof. Let \(f \in \mathcal{R} \). Then we can rewrite (3.7), (3.8) and (3.9) in the following ways
\[
\Delta_1 = \frac{c_5 (c_2 - c_1^2)}{24} + \frac{c_3 (c_4 - c_2^2)}{36} - \frac{c_3 (c_4 - c_1 c_3)}{32} - \frac{67 c_4 (c_3 - c_1 c_2)}{1440}
\]
\[
+ \frac{19 c_2 (c_5 - c_1 c_4)}{1440} + \frac{e_2 c_5}{1440},
\]
\[
\Delta_2 = \frac{c_5 (c_3 - c_1 c_2)}{36} - \frac{c_4 (c_4 - c_2^2)}{45} + \frac{c_3 (c_5 - c_2 c_3)}{48} - \frac{4 c_4 (c_4 - c_1 c_3)}{225}
\]
\[
- \frac{13 c_3 (c_5 - c_1 c_4)}{1800} + \frac{e_3 c_5}{3600},
\]
\[
\Delta_3 = \frac{c_5 (c_4 - c_2^2)}{54} - \frac{c_5 (c_4 - c_1 c_3)}{48} + \frac{c_3 (c_6 - c_3^2)}{64} - \frac{c_3 (c_6 - c_2 c_4)}{64}
\]
\[
+ \frac{c_4 (c_5 - c_1 c_4)}{50} - \frac{17 c_4 (c_5 - c_2 c_3)}{960} + \frac{e_4 c_5}{43200}.
\]

Using the triangle inequality along with the inequalities (2.1) and (2.2), we obtain
\[
|\Delta_1| \leq \frac{1}{6} + \frac{1}{9} + \frac{1}{8} + \frac{67}{360} + \frac{19}{360} + \frac{1}{360} = \frac{29}{45},
\]
\[
|\Delta_2| \leq \frac{1}{9} + \frac{4}{45} + \frac{1}{12} + \frac{16}{225} + \frac{26}{900} + \frac{1}{900} = \frac{173}{450},
\]
and
\[
|\Delta_3| \leq \frac{2}{27} + \frac{1}{12} + \frac{1}{16} + \frac{1}{16} + \frac{2}{25} + \frac{17}{240} + \frac{1}{10800} = \frac{13}{30}.
\]

Now putting the values \(|H_{3,1}(f)| \leq \frac{41}{108}, |\Delta_1| \leq \frac{29}{45}, |\Delta_2| \leq \frac{123}{450}, |\Delta_3| \leq \frac{13}{30}\) along with the inequality \(|a_n| \leq \frac{2}{n}\) for \(n \geq 2 \) in (3.1), we obtain
\[
|H_{4,1}(f)| \leq |a_7| |H_3(1)| + |a_6| |\Delta_1| + |a_5| |\Delta_2| + |a_4| |\Delta_3|
\]
\[
\leq \frac{2}{7} + \frac{1}{6} + \frac{1}{2} + \frac{1}{6} + \frac{17}{3} + \frac{1}{2} + \frac{1}{3} + \frac{11}{2}
\]
\[
= \frac{73757}{94500} \approx 0.78050
\]
and this completes the proof. \(\square \)

4. Bounds of \(|H_{4,1}(f)| \) for the sets \(\mathcal{R}^{(2)} \) and \(\mathcal{R}^{(3)} \)

Let \(m \in \mathbb{N} = \{1, 2, \ldots\} \). A domain \(\Lambda \) is said to be \(m \)-fold symmetric if a rotation of \(\Lambda \) about the origin through an angle \(2\pi/m \) carries \(\Lambda \) on itself. A function \(f \) is said to be \(m \)-fold symmetric in \(\mathbb{D} \), if
\[
f(e^{2\pi i/m} z) = e^{2\pi i/m} f(z), \quad (z \in \mathbb{D}).
\]
By $S^{(m)}$, we mean the set of m-fold univalent functions having the following Taylor series form

\begin{equation}
 f(z) = z + \sum_{k=1}^{\infty} a_{mk+1}z^{mk+1}, \ (z \in \mathbb{D}).
\end{equation}

The sub-family $R^{(m)}$ of $S^{(m)}$ is the set of m-fold symmetric bounded turning functions. More intuitively, an analytic function f of the form (4.1) belongs to the family $R^{(m)}$ if and only if

\[f'(z) = p(z) \]

with $p \in P^{(m)}$, where the set $P^{(m)}$ is defined by

\begin{equation}
 P^{(m)} = \left\{ p \in P : p(z) = 1 + \sum_{k=1}^{\infty} c_{mk}z^{mk}, \ (z \in \mathbb{D}) \right\}.
\end{equation}

Theorem 4.1. If $f \in f \in R^{(3)}$, then

\[|H_{4,1}(f)| \leq \frac{1}{49}. \]

Proof. Now, let $f \in R^{(3)}$. Then there exists a function $\tilde{g}(z) = z + d_4z^4 + d_7z^7 + \cdots \in S^*(3)$ such that $\frac{\tilde{g}'(z)}{\tilde{g}(z)} = f'(z)$. Since $f \in R^{(3)}$, using the series form (4.1) for $m = 3$, we get

\[1 + 3d_4z^3 + (6d_7 - 3d_4^2)z^6 + \cdots = 1 + 4a_4z^3 + 7a_7z^6 + \cdots. \]

Comparing the coefficients of z^3 and z^6 on both sides, we obtain

\begin{equation}
 3d_4 = 4a_4, \quad 6d_7 - 3d_4^2 = 7a_7.
\end{equation}

Since $\tilde{g} \in S^*(3)$, there exists a function g in S^* of the form (2.3) such that $\tilde{g}(z) = \sqrt[3]{g(z^3)}$. Therefore

\[z + d_4z^4 + d_7z^7 + \cdots = z + \frac{1}{3}b_2z^4 + \left(\frac{1}{3}b_3 - \frac{1}{9}b_2^2 \right)z^7 + \cdots. \]

Comparing the coefficients of z^4 and z^7, we get

\begin{equation}
 d_4 = \frac{1}{3}b_2, \quad d_7 = \frac{1}{3}b_3 - \frac{1}{9}b_2^2.
\end{equation}

Now from (4.3) and (4.4), it follows that

\begin{equation}
 a_4 = \frac{b_2}{4}, \quad a_7 = \frac{1}{7}(2b_3 - b_2^2).\]

We observe that $a_2 = a_3 = a_5 = a_6 = 0$ for the function $f \in R^{(3)}$. Also it is clear that $H_{4,1}(f) = a_4^2(a_4^2 - a_7)$. This implies that

\[|H_{4,1}(f)| = \frac{1}{56} \left| b_2^2 \left(b_3 - \frac{23}{32}b_2^2 \right) \right|. \]

Using Theorem 2.3 for $\lambda = \frac{23}{32} \in \left[\frac{5}{8}, \frac{3}{4} \right]$, we have the required result. \qed
Theorem 4.2. If $f \in f \in \mathcal{R}^{(2)}$, then

$$|H_{4,1}(f)| \leq \frac{368}{2625}.$$

Proof. It is clear that for $f \in \mathcal{R}^{(2)}$ we have $a_2 = a_4 = a_6 = 0$. Consequently

$$H_{4,1}(f) := a_3a_5a_7 - a_3^3a_7 + a_3^2a_5^2 - a_3^3.$$

Since $f \in \mathcal{R}^{(2)}$, there exists a function $p \in \mathcal{P}^{(2)}$ such that $f'(z) = p(z)$. For $f \in \mathcal{R}^{(2)}$, using the series form (4.1) and (4.2) when $m = 2$, we can write

$$3a_3 = c_2, \quad 5a_5 = c_4, \quad 7a_7 = c_6.$$

Therefore

$$H_{4,1}(f) = \frac{1}{105}(c_2c_4c_6 - \frac{1}{189}c_2^3c_6 + \frac{1}{225}c_2^2c_4^2 - \frac{1}{125}c_4^3)$$

$$= \frac{1}{105}(c_2c_6 - \frac{21}{25}c_2^2)(c_4 - \frac{5}{9}c_2^2).$$

Using Lemma 2.1 and the triangle inequality, we get

$$|H_{4,1}(f)| \leq \frac{368}{2625}.$$

Hence the proof is complete. □

References

MUHAMMAD ARIF
DEPARTMENT OF MATHEMATICS
ABDUL WALI KHAN UNIVERSITY
MARDAN, PAKISTAN
Email address: marifmaths@awkum.edu.pk

LUBNA RANI
DEPARTMENT OF MATHEMATICS
ABDUL WALI KHAN UNIVERSITY
MARDAN, PAKISTAN
Email address: lubna4maths@gmail.com
Mohsan Raza
Department of Mathematics
Government College University
Faisalabad, Pakistan
Email address: mohsan976@yahoo.com

Paweł Zaprawa
Department of Mathematics
Faculty of Mechanical Engineering
Lublin University of Technology
Poland
Email address: p.zaprawa@pollub.pl