DOI QR코드

DOI QR Code

QUANTITATIVE WEIGHTED BOUNDS FOR THE VECTOR-VALUED SINGULAR INTEGRAL OPERATORS WITH NONSMOOTH KERNELS

  • Hu, Guoen (School of Applied Mathematics Beijing Normal University)
  • Received : 2017.12.12
  • Accepted : 2018.05.03
  • Published : 2018.11.30

Abstract

Let T be the singular integral operator with nonsmooth kernel which was introduced by Duong and McIntosh, and $T_q(q{\in}(1,{\infty}))$ be the vector-valued operator defined by $T_qf(x)=({\sum}_{k=1}^{\infty}{\mid}T\;f_k(x){\mid}^q)^{1/q}$. In this paper, by proving certain weak type endpoint estimate of L log L type for the grand maximal operator of T, the author establishes some quantitative weighted bounds for $T_q$ and the corresponding vector-valued maximal singular integral operator.

Keywords

References

  1. S. M. Buckley, Estimates for operator norms on weighted spaces and reverse Jensen inequalities, Trans. Amer. Math. Soc. 340 (1993), no. 1, 253-272. https://doi.org/10.1090/S0002-9947-1993-1124164-0
  2. M. Carozza and A. Passarelli Di Napoli, Composition of maximal operators, Publ. Mat. 40 (1996), no. 2, 397-409. https://doi.org/10.5565/PUBLMAT_40296_11
  3. J. Chen and G. Hu, Weighted vector-valued bounds for a class of multilinear singular integral operators and applications, J. Korean Math. Soc. 55 (2018), 671-694.
  4. D. Cruz-Uribe, J. M. Martell, and C. Perez, Sharp weighted estimates for classical operators, Adv. Math. 229 (2012), no. 1, 408-441. https://doi.org/10.1016/j.aim.2011.08.013
  5. O. Dragicevic, L. Grafakos, M. Pereyra, and S. Petermichl, Extrapolation and sharp norm estimates for classical operators on weighted Lebesgue spaces, Publ. Mat. 49 (2005), no. 1, 73-91. https://doi.org/10.5565/PUBLMAT_49105_03
  6. X. T. Duong and A. MacIntosh, Singular integral operators with non-smooth kernels on irregular domains, Rev. Mat. Iberoamericana 15 (1999), no. 2, 233-265.
  7. C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115. https://doi.org/10.2307/2373450
  8. L. Grafakos, Modern Fourier Analysis, second edition, Graduate Texts in Mathematics, 250, Springer, New York, 2009.
  9. G. Hu, Weighted vector-valued estimates for a non-standard Calderon-Zygmund operator, Nonlinear Anal. 165 (2017), 143-162. https://doi.org/10.1016/j.na.2017.09.013
  10. G. Hu and D. Yang, Weighted estimates for singular integral operators with nonsmooth kernels and applications, J. Aust. Math. Soc. 85 (2008), no. 3, 377-417. https://doi.org/10.1017/S1446788708000657
  11. T. Hytonen, The sharp weighted bound for general Calderon-Zygmund operators, Ann. of Math. (2) 175 (2012), no. 3, 1473-1506. https://doi.org/10.4007/annals.2012.175.3.9
  12. T. Hytonen, M. T. Lacey, and C. Perez, Sharp weighted bounds for the q-variation of singular integrals, Bull. Lond. Math. Soc. 45 (2013), no. 3, 529-540. https://doi.org/10.1112/blms/bds114
  13. T. Hytonen and C. Perez, Sharp weighted bounds involving $A_{\infty}$, Anal. PDE 6 (2013), no. 4, 777-818. https://doi.org/10.2140/apde.2013.6.777
  14. T. Hytonen and C. Perez, The L(log L)$^{\epsilon}$ endpoint estimate for maximal singular integral operators, J. Math. Anal. Appl. 428 (2015), no. 1, 605-626. https://doi.org/10.1016/j.jmaa.2015.03.017
  15. M. T. Lacey and K. Li, On $A_p-A_{\infty}$ type estimates for square functions, Math. Z. 284 (2016), no. 3-4, 1211-1222. https://doi.org/10.1007/s00209-016-1696-8
  16. H. V. Le, Vector-valued singular integrals with non-smooth kernels on spaces of homogeneous type, Complex Anal. Oper. Theory 11 (2017), no. 1, 57-84. https://doi.org/10.1007/s11785-016-0567-y
  17. A. K. Lerner, On pointwise estimates involving sparse operators, New York J. Math. 22 (2016), 341-349.
  18. A. K. Lerner, S. Ombrosi, and I. P. Rivera-Rios, On pointwise and weighted estimates for commutators of Calderon-Zygmund operators, Adv. Math. 319 (2017), 153-181. https://doi.org/10.1016/j.aim.2017.08.022
  19. J. M. Martell, Sharp maximal functions associated with approximations of the identity in spaces of homogeneous type and applications, Studia Math. 161 (2004), no. 2, 113-145. https://doi.org/10.4064/sm161-2-2
  20. H.-X. Mo and S.-Z. Lu, Vector-valued singular integral operators with non-smooth kernels and related multilinear commutators, Pure Appl. Math. Q. 3 (2007), no. 2, Special Issue: In honor of Leon Simon. Part 1, 451-480. https://doi.org/10.4310/PAMQ.2007.v3.n2.a3
  21. C. Perez, Weighted norm inequalities for singular integral operators, J. London Math. Soc. (2) 49 (1994), no. 2, 296-308. https://doi.org/10.1112/jlms/49.2.296
  22. S. Petermichl, The sharp bound for the Hilbert transform on weighted Lebesgue spaces in terms of the classical $A_p$ characteristic, Amer. J. Math. 129 (2007), no. 5, 1355-1375. https://doi.org/10.1353/ajm.2007.0036
  23. S. Petermichl, The sharp weighted bound for the Riesz transforms, Proc. Amer. Math. Soc. 136 (2008), no. 4, 1237-1249. https://doi.org/10.1090/S0002-9939-07-08934-4
  24. E. M. Stein, Harmonic Analysis: Real-Variable Methods, Orthogonality, and Oscillatory Integrals, Princeton Mathematical Series, 43, Princeton University Press, Princeton, NJ, 1993.
  25. J. M. Wilson, Weighted inequalities for the dyadic square function without dyadic $A_{\infty}$, Duke Math. J. 55 (1987), no. 1, 19-50. https://doi.org/10.1215/S0012-7094-87-05502-5