DOI QR코드

DOI QR Code

Downregulated microRNAs in the colorectal cancer: diagnostic and therapeutic perspectives

  • Hernandez, Rosa (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Sanchez-Jimenez, Ester (Proteomics Laboratory CSIC/UAB, Institute of Biomedical Research) ;
  • Melguizo, Consolacion (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Prados, Jose (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada) ;
  • Rama, Ana Rosa (Institute of Biopathology and Regenerative Medicine (IBIMER), Center of Biomedical Research (CIBM), University of Granada)
  • Received : 2018.05.24
  • Accepted : 2018.07.10
  • Published : 2018.11.30

Abstract

Colorectal cancer (CRC), the third most common cancer in the world, has no specific biomarkers that facilitate its diagnosis and subsequent treatment. The miRNAs, small single-stranded RNAs that repress the mRNA translation and trigger the mRNA degradation, show aberrant levels in the CRC, by which these molecules have been related with the initiation, progression, and drug-resistance of this cancer type. Numerous studies show the microRNAs influence the cellular mechanisms related to the cell cycle, differentiation, apoptosis, and migration of the cancer cells through the post-transcriptionally regulated gene expression. Specific patterns of the upregulated and down-regulated miRNA have been associated with the CRC diagnosis, prognosis, and therapeutic response. Concretely, the downregulated miRNAs represent attractive candidates, not only for the CRC diagnosis, but for the targeted therapies via the tumor-suppressing microRNA replacement. This review shows a general overview of the potential uses of the miRNAs in the CRC diagnosis, prognosis, and treatment with a special focus on the downregulated ones.

Keywords

References

  1. Wang F, Fu XD, Zhou Y and Zhang Y (2009) Downregulation of the cyclin E1 oncogene expression by microRNA-16-1 induces cell cycle arrest in human cancer cells. BMB Rep 42, 725-730 https://doi.org/10.5483/BMBRep.2009.42.11.725
  2. Hausser J and Zavolan M (2014) Identification and consequences of miRNA-target interactions--beyond repression of gene expression. Nat Rev Genet 15, 599-612
  3. Wu BL, Xu LY, Du ZP et al (2011) MiRNA profile in esophageal squamous cell carcinoma: downregulation of miR-143 and miR-145. World J Gastroenterol 17, 79-88 https://doi.org/10.3748/wjg.v17.i1.79
  4. Tokarz P and Blasiak J (2012) The role of microRNA in metastatic colorectal cancer and its significance in cancer prognosis and treatment. Acta Biochim Pol 59, 467-474
  5. Lee Y, Ahn C, Han J et al (2003) The nuclear RNase III Drosha initiates microRNA processing. Nature 425, 415-419 https://doi.org/10.1038/nature01957
  6. Yi R, Qin Y, Macara IG and Cullen BR (2003) Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Genes Dev 17, 3011-3016 https://doi.org/10.1101/gad.1158803
  7. Finnegan EF and Pasquinelli AE (2013) MicroRNA biogenesis: regulating the regulators. Crit Rev Biochem Mol Biol 48, 51-68 https://doi.org/10.3109/10409238.2012.738643
  8. Hamfjord J, Stangeland AM, Hughes T et al (2012) Differential expression of miRNAs in colorectal cancer: comparison of paired tumor tissue and adjacent normal mucosa using high-throughput sequencing. PLoS One 7, e34150 https://doi.org/10.1371/journal.pone.0034150
  9. Lu J, Getz G, Miska EA et al (2005) MicroRNA expression profiles classify human cancers. Nature 435, 834-838 https://doi.org/10.1038/nature03702
  10. Weber JA, Baxter DH, Zhang S et al (2010) The microRNA spectrum in 12 body fluids. Clin Chem 56, 1733-1741 https://doi.org/10.1373/clinchem.2010.147405
  11. Chen X, Ba Y, Ma L et al (2008) Characterization of microRNAs in serum: a novel class of biomarkers for diagnosis of cancer and other diseases. Cell Res 18, 997-1006 https://doi.org/10.1038/cr.2008.282
  12. Arends MJ (2013) Pathways of colorectal carcinogenesis. Appl Immunohistochem Mol Morphol 21, 97-102
  13. Siegel RL, Miller KD and Jemal A (2016) Cancer statistics, 2016. CA Cancer J Clin 66, 7-30 https://doi.org/10.3322/caac.21332
  14. Tarasov VA, Matishov DG, Shin EF et al (2014) [Coordinated aberranit expression of miRNAs in colon cancer]. Genetika 50, 1232-1244
  15. Fesler A, Guo S, Liu H, Wu N and Ju J (2017) Overcoming chemoresistance in cancer stem cells with the help of microRNAs in colorectal cancer. Epigenomics 9, 793-796 https://doi.org/10.2217/epi-2017-0041
  16. Stiegelbauer V, Perakis S, Deutsch A, Ling H, Gerger A and Pichler M (2014) MicroRNAs as novel predictive biomarkers and therapeutic targets in colorectal cancer. World J Gastroenterol 20, 11727-11735 https://doi.org/10.3748/wjg.v20.i33.11727
  17. Schee K, Lorenz S, Worren MM et al (2013) Deep sequencing the microRNA transcriptome in colorectal cancer. PLoS One 8, e66165 https://doi.org/10.1371/journal.pone.0066165
  18. Thiery JP, Acloque H, Huang RY and Nieto MA (2009) Epithelial-mesenchymal transitions in development and disease. Cell 139, 871-890 https://doi.org/10.1016/j.cell.2009.11.007
  19. Shi L, Jackstadt R, Siemens H, Li H, Kirchner T and Hermeking H (2014) p53-induced miR-15a/16-1 and AP4 form a double-negative feedback loop to regulate epithelial-mesenchymal transition and metastasis in colorectal cancer. Cancer Res 74, 532-542 https://doi.org/10.1158/0008-5472.CAN-13-2203
  20. Liu R, Lu Z, Gu J et al (2018) MicroRNAs 15A and 16-1 activate signaling pathways that mediate chemotaxis of immune regulatory B cells to colorectal tumors. Gastroenterology 154, 637-651 e637 https://doi.org/10.1053/j.gastro.2017.09.045
  21. Dai L, Wang W, Zhang S et al (2012) Vector-based miR-15a/16-1 plasmid inhibits colon cancer growth in vivo. Cell Biol Int 36, 765-770 https://doi.org/10.1042/CBI20110404
  22. Cheng HH, Kuo CC, Yan JL et al (2012) Control of cyclooxygenase-2 expression and tumorigenesis by endogenous 5-methoxytryptophan. Proc Natl Acad Sci U S A 109, 13231-13236 https://doi.org/10.1073/pnas.1209919109
  23. Young LE, Moore AE, Sokol L, Meisner-Kober N and Dixon DA (2012) The mRNA stability factor HuR inhibits microRNA-16 targeting of COX-2. Mol Cancer Res 10, 167-180 https://doi.org/10.1158/1541-7786.MCR-11-0337
  24. Chivukula RR, Shi G, Acharya A et al (2014) An essential mesenchymal function for miR-143/145 in intestinal epithelial regeneration. Cell 157, 1104-1116 https://doi.org/10.1016/j.cell.2014.03.055
  25. Akao Y, Nakagawa Y and Naoe T (2006) MicroRNAs 143 and 145 are possible common onco-microRNAs in human cancers. Oncol Rep 16, 845-850
  26. Takagi T, Iio A, Nakagawa Y, Naoe T, Tanigawa N and Akao Y (2009) Decreased expression of microRNA-143 and -145 in human gastric cancers. Oncology 77, 12-21 https://doi.org/10.1159/000218166
  27. Szczyrba J, Loprich E, Wach S et al (2010) The microRNA profile of prostate carcinoma obtained by deep sequencing. Mol Cancer Res 8, 529-538 https://doi.org/10.1158/1541-7786.MCR-09-0443
  28. Wang W, Ji G, Xiao X et al (2016) Epigenetically regulated miR-145 suppresses colon cancer invasion and metastasis by targeting LASP1. Oncotarget 7, 68674-68687
  29. Drebber U, Lay M, Wedemeyer I et al (2011) Altered levels of the onco-microRNA 21 and the tumor-supressor microRNAs 143 and 145 in advanced rectal cancer indicate successful neoadjuvant chemoradiotherapy. Int J Oncol 39, 409-415
  30. Li C, Xu N, Li YQ, Wang Y and Zhu ZT (2016) Inhibition of SW620 human colon cancer cells by upregulating miRNA-145. World J Gastroenterol 22, 2771-2778 https://doi.org/10.3748/wjg.v22.i9.2771
  31. Xu XH, Wu XB, Wu SB, Liu HB, Chen R and Li Y (2014) Identification of miRNAs differentially expressed in clinical stages of human colorectal carcinoma-an investigation in Guangzhou, China. PLoS One 9, e94060 https://doi.org/10.1371/journal.pone.0094060
  32. Pramanik D, Campbell NR, Karikari C et al (2011) Restitution of tumor suppressor microRNAs using a systemic nanovector inhibits pancreatic cancer growth in mice. Mol Cancer Ther 10, 1470-1480 https://doi.org/10.1158/1535-7163.MCT-11-0152
  33. Ibrahim AF, Weirauch U, Thomas M, Grunweller A, Hartmann RK and Aigner A (2011) MicroRNA replacement therapy for miR-145 and miR-33a is efficacious in a model of colon carcinoma. Cancer Res 71, 5214-5224 https://doi.org/10.1158/0008-5472.CAN-10-4645
  34. Tanoglu A, Balta AZ, Berber U et al (2015) MicroRNA expression profile in patients with stage II colorectal cancer: A turkish referral center study. Asian Pac J Cancer Prev 16, 1851-1855 https://doi.org/10.7314/APJCP.2015.16.5.1851
  35. Roy P, Das S, Auddy RG and Mukherjee A (2014) Engineered andrographolide nanosystems for smart recovery in hepatotoxic conditions. Int J Nanomedicine 9, 4723-4735
  36. Kang SM, Lee HJ and Cho JY (2013) MicroRNA-365 regulates NKX2-1, a key mediator of lung cancer. Cancer Lett 335, 487-494 https://doi.org/10.1016/j.canlet.2013.03.006
  37. Zhang P, Zheng C, Ye H et al (2014) MicroRNA-365 inhibits vascular smooth muscle cell proliferation through targeting cyclin D1. Int J Med Sci 11, 765-770 https://doi.org/10.7150/ijms.8938
  38. Guo SL, Ye H, Teng Y et al (2013) Akt-p53-miR-365-cyclin D1/cdc25A axis contributes to gastric tumorigenesis induced by PTEN deficiency. Nat Commun 4, 2544 https://doi.org/10.1038/ncomms3544
  39. Lea MA (2010) Recently identified and potential targets for colon cancer treatment. Future Oncol 6, 993-1002 https://doi.org/10.2217/fon.10.53
  40. Nie J, Liu L, Zheng W et al (2012) microRNA-365, down-regulated in colon cancer, inhibits cell cycle progression and promotes apoptosis of colon cancer cells by probably targeting Cyclin D1 and Bcl-2. Carcinogenesis 33, 220-225 https://doi.org/10.1093/carcin/bgr245
  41. Zhou X, Xu X, Wang J, Lin J and Chen W (2015) Identifying miRNA/mRNA negative regulation pairs in colorectal cancer. Sci Rep 5, 12995 https://doi.org/10.1038/srep12995
  42. Papetti M and Augenlicht LH (2011) Mybl2, downregulated during colon epithelial cell maturation, is suppressed by miR-365. Am J Physiol Gastrointest Liver Physiol 301, G508-518 https://doi.org/10.1152/ajpgi.00066.2011
  43. Hermeking H (2010) The miR-34 family in cancer and apoptosis. Cell Death Differ 17, 193-199 https://doi.org/10.1038/cdd.2009.56
  44. Chang TC, Wentzel EA, Kent OA et al (2007) Transactivation of miR-34a by p53 broadly influences gene expression and promotes apoptosis. Mol Cell 26, 745-752 https://doi.org/10.1016/j.molcel.2007.05.010
  45. He L, He X, Lim LP et al (2007) A microRNA component of the p53 tumour suppressor network. Nature 447, 1130-1134 https://doi.org/10.1038/nature05939
  46. Jamieson NB, Morran DC, Morton JP et al (2012) MicroRNA molecular profiles associated with diagnosis, clinicopathologic criteria, and overall survival in patients with resectable pancreatic ductal adenocarcinoma. Clin Cancer Res 18, 534-545 https://doi.org/10.1158/1078-0432.CCR-11-0679
  47. Gao J, Li N, Dong Y et al (2015) miR-34a-5p suppresses colorectal cancer metastasis and predicts recurrence in patients with stage II/III colorectal cancer. Oncogene 34, 4142-4152 https://doi.org/10.1038/onc.2014.348
  48. Hiyoshi Y, Schetter AJ, Okayama H et al (2015) Increased microRNA-34b and -34c predominantly expressed in stromal tissues is associated with poor prognosis in human colon cancer. PLoS One 10, e0124899 https://doi.org/10.1371/journal.pone.0124899
  49. Ge P, Yu X, Wang ZC and Lin J (2015) Aberrant methylation of the 1p36 tumor suppressor gene RIZ1 in renal cell carcinoma. Asian Pac J Cancer Prev 16, 4071-4075 https://doi.org/10.7314/APJCP.2015.16.9.4071
  50. Roy S, Levi E, Majumdar AP and Sarkar FH (2012) Expression of miR-34 is lost in colon cancer which can be re-expressed by a novel agent CDF. J Hematol Oncol 5, 58 https://doi.org/10.1186/1756-8722-5-58
  51. Svoboda M, Izakovicova Holla L, Sefr R et al (2008) Micro-RNAs miR125b and miR137 are frequently upregulated in response to capecitabine chemoradiotherapy of rectal cancer. Int J Oncol 33, 541-547
  52. Wang J, Hevi S, Kurash JK et al (2009) The lysine demethylase LSD1 (KDM1) is required for maintenance of global DNA methylation. Nat Genet 41, 125-129 https://doi.org/10.1038/ng.268
  53. Balaguer F, Link A, Lozano JJ et al (2010) Epigenetic silencing of miR-137 is an early event in colorectal carcinogenesis. Cancer Res 70, 6609-6618 https://doi.org/10.1158/0008-5472.CAN-10-0622
  54. Chen J, Ding J, Wang Z, Zhu J, Wang X and Du J (2017) Identification of downstream metastasis-associated target genes regulated by LSD1 in colon cancer cells. Oncotarget 8, 19609-19630
  55. Schaller MD (2001) Paxillin: a focal adhesion-associated adaptor protein. Oncogene 20, 6459-6472 https://doi.org/10.1038/sj.onc.1204786
  56. Liang L, Li X, Zhang X et al (2013) MicroRNA-137, an HMGA1 target, suppresses colorectal cancer cell invasion and metastasis in mice by directly targeting FMNL2. Gastroenterology 144, 624-635 e624 https://doi.org/10.1053/j.gastro.2012.11.033
  57. Ng EK, Tsang WP, Ng SS et al (2009) MicroRNA-143 targets DNA methyltransferases 3A in colorectal cancer. Br J Cancer 101, 699-706 https://doi.org/10.1038/sj.bjc.6605195
  58. Chen X, Guo X, Zhang H et al (2009) Role of miR-143 targeting KRAS in colorectal tumorigenesis. Oncogene 28, 1385-1392 https://doi.org/10.1038/onc.2008.474
  59. Pichler M, Winter E, Stotz M et al (2012) Down-regulation of KRAS-interacting miRNA-143 predicts poor prognosis but not response to EGFR-targeted agents in colorectal cancer. Br J Cancer 106, 1826-1832 https://doi.org/10.1038/bjc.2012.175
  60. Borralho PM, Kren BT, Castro RE, da Silva IB, Steer CJ and Rodrigues CM (2009) MicroRNA-143 reduces viability and increases sensitivity to 5-fluorouracil in HCT116 human colorectal cancer cells. FEBS J 276, 6689-6700 https://doi.org/10.1111/j.1742-4658.2009.07383.x
  61. Qian X, Yu J, Yin Y et al (2013) MicroRNA-143 inhibits tumor growth and angiogenesis and sensitizes chemosensitivity to oxaliplatin in colorectal cancers. Cell Cycle 12, 1385-1394 https://doi.org/10.4161/cc.24477
  62. Liu GH, Zhou ZG, Chen R et al (2013) Serum miR-21 and miR-92a as biomarkers in the diagnosis and prognosis of colorectal cancer. Tumour Biol 34, 2175-2181 https://doi.org/10.1007/s13277-013-0753-8
  63. Kanaan Z, Rai SN, Eichenberger MR et al (2012) Plasma miR-21: a potential diagnostic marker of colorectal cancer. Ann Surg 256, 544-551 https://doi.org/10.1097/SLA.0b013e318265bd6f
  64. Aherne ST, Madden SF, Hughes DJ et al (2015) Circulating miRNAs miR-34a and miR-150 associated with colorectal cancer progression. BMC Cancer 15, 329 https://doi.org/10.1186/s12885-015-1327-5
  65. Imaoka H, Toiyama Y, Fujikawa H et al (2016) Circulating microRNA-1290 as a novel diagnostic and prognostic biomarker in human colorectal cancer. Ann Oncol 27, 1879-1886 https://doi.org/10.1093/annonc/mdw279
  66. Kanaan Z, Roberts H, Eichenberger MR et al (2013) A plasma microRNA panel for detection of colorectal adenomas: a step toward more precise screening for colorectal cancer. Ann Surg 258, 400-408 https://doi.org/10.1097/SLA.0b013e3182a15bcc
  67. Ahmed FE (2014) miRNA as markers for the diagnostic screening of colon cancer. Expert Rev Anticancer Ther 14, 463-485 https://doi.org/10.1586/14737140.2014.869479
  68. Yi R, Li Y, Wang FL, Miao G, Qi RM and Zhao YY (2016) MicroRNAs as diagnostic and prognostic biomarkers in colorectal cancer. World J Gastrointest Oncol 8, 330-340 https://doi.org/10.4251/wjgo.v8.i4.330
  69. Ebert MS and Sharp PA (2010) MicroRNA sponges: progress and possibilities. RNA 16, 2043-2050 https://doi.org/10.1261/rna.2414110
  70. Jung J, Yeom C, Choi YS et al (2015) Simultaneous inhibition of multiple oncogenic miRNAs by a multi-potent microRNA sponge. Oncotarget 6, 20370-20387
  71. Shen B, Yuan Y, Zhang Y et al (2017) Long non-coding RNA FBXL19-AS1 plays oncogenic role in colorectal cancer by sponging miR-203. Biochem Biophys Res Commun 488, 67-73 https://doi.org/10.1016/j.bbrc.2017.05.008
  72. Xu J, Zhang R and Zhao J (2017) The Novel Long Noncoding RNA TUSC7 Inhibits Proliferation by Sponging MiR-211 in Colorectal Cancer. Cell Physiol Biochem 41, 635-644 https://doi.org/10.1159/000457938
  73. Wu X, He X, Li S, Xu X, Chen X and Zhu H (2016) Long non-coding RNA ucoo2kmd.1 regulates CD44-dependent cell growth by competing for miR-211-3p in colorectal cancer. PLoS One 11, e0151287 https://doi.org/10.1371/journal.pone.0151287
  74. Gumireddy K, Young DD, Xiong X, Hogenesch JB, Huang Q and Deiters A (2008) Small-molecule inhibitors of microrna miR-21 function. Angew Chem Int Ed Engl 47, 7482-7484 https://doi.org/10.1002/anie.200801555
  75. Valeri N, Braconi C, Gasparini P et al (2014) MicroRNA-135b promotes cancer progression by acting as a downstream effector of oncogenic pathways in colon cancer. Cancer Cell 25, 469-483 https://doi.org/10.1016/j.ccr.2014.03.006
  76. Chai H, Liu M, Tian R, Li X and Tang H (2011) miR-20a targets BNIP2 and contributes chemotherapeutic resistance in colorectal adenocarcinoma SW480 and SW620 cell lines. Acta Biochim Biophys Sin (Shanghai) 43, 217-225 https://doi.org/10.1093/abbs/gmq125
  77. Valeri N, Gasparini P, Braconi C et al (2010) MicroRNA-21 induces resistance to 5-fluorouracil by down-regulating human DNA MutS homolog 2 (hMSH2). Proc Natl Acad Sci U S A 107, 21098-21103 https://doi.org/10.1073/pnas.1015541107
  78. Huang Z, Huang S, Wang Q et al (2011) MicroRNA-95 promotes cell proliferation and targets sorting Nexin 1 in human colorectal carcinoma. Cancer Res 71, 2582-2589 https://doi.org/10.1158/0008-5472.CAN-10-3032
  79. Tsang WP, Ng EK, Ng SS et al (2010) Oncofetal H19-derived miR-675 regulates tumor suppressor RB in human colorectal cancer. Carcinogenesis 31, 350-358 https://doi.org/10.1093/carcin/bgp181
  80. Wang CJ, Stratmann J, Zhou ZG and Sun XF (2010) Suppression of microRNA-31 increases sensitivity to 5-FU at an early stage, and affects cell migration and invasion in HCT-116 colon cancer cells. BMC Cancer 10, 616 https://doi.org/10.1186/1471-2407-10-616
  81. van Rooij E and Kauppinen S (2014) Development of microRNA therapeutics is coming of age. EMBO Mol Med 6, 851-864 https://doi.org/10.15252/emmm.201100899
  82. Christopher AF, Kaur RP, Kaur G, Kaur A, Gupta V and Bansal P (2016) MicroRNA therapeutics: Discovering novel targets and developing specific therapy. Perspect Clin Res 7, 68-74 https://doi.org/10.4103/2229-3485.179431
  83. Kawai T and Akira S (2010) The role of patternrecognition receptors in innate immunity: update on Toll-like receptors. Nat Immunol 11, 373-384 https://doi.org/10.1038/ni.1863
  84. Simmer F, Venderbosch S, Dijkstra JR et al (2015) MicroRNA-143 is a putative predictive factor for the response to fluoropyrimidine-based chemotherapy in patients with metastatic colorectal cancer. Oncotarget 6, 22996-23007
  85. Mlcochova J, Faltejskova-Vychytilova P, Ferracin M et al (2015) MicroRNA expression profiling identifies miR-31-5p/3p as associated with time to progression in wild-type RAS metastatic colorectal cancer treated with cetuximab. Oncotarget 6, 38695-38704
  86. Perez-Carbonell L, Sinicrope FA, Alberts SR et al (2015) MiR-320e is a novel prognostic biomarker in colorectal cancer. Br J Cancer 113, 83-90 https://doi.org/10.1038/bjc.2015.168
  87. Lee HC, Kim JG, Chae YS et al (2010) Prognostic impact of microRNA-related gene polymorphisms on survival of patients with colorectal cancer. J Cancer Res Clin Oncol 136, 1073-1078 https://doi.org/10.1007/s00432-009-0754-6
  88. Li T, Gao F and Zhang XP (2015) miR-203 enhances chemosensitivity to 5-fluorouracil by targeting thymidylate synthase in colorectal cancer. Oncol Rep 33, 607-614 https://doi.org/10.3892/or.2014.3646
  89. Boni V, Bitarte N, Cristobal I et al (2010) miR-192/miR-215 influence 5-fluorouracil resistance through cell cyclemediated mechanisms complementary to its posttranscriptional thymidilate synthase regulation. Mol Cancer Ther 9, 2265-2275 https://doi.org/10.1158/1535-7163.MCT-10-0061
  90. Hansen TF, Carlsen AL, Heegaard NH, Sorensen FB and Jakobsen A (2015) Changes in circulating microRNA-126 during treatment with chemotherapy and bevacizumab predicts treatment response in patients with metastatic colorectal cancer. Br J Cancer 112, 624-629 https://doi.org/10.1038/bjc.2014.652
  91. Zhang Y, Yu J, Liu H et al (2015) Novel epigenetic CREB-miR-630 signaling axis regulates radiosensitivity in colorectal cancer. PLoS One 10, e0133870 https://doi.org/10.1371/journal.pone.0133870
  92. Diaz R, Silva J, Garcia JM et al (2008) Deregulated expression of miR-106a predicts survival in human colon cancer patients. Genes Chromosomes Cancer 47, 794-802 https://doi.org/10.1002/gcc.20580
  93. Sakaguchi M, Hisamori S, Oshima N, Sato F, Shimono Y and Sakai Y (2016) miR-137 Regulates the tumorigenicity of colon cancer stem cells through the inhibition of DCLK1. Mol Cancer Res 14, 354-362 https://doi.org/10.1158/1541-7786.MCR-15-0380
  94. Wang CJ, Zhou ZG, Wang L et al (2009) Clinicopathological significance of microRNA-31, -143 and -145 expression in colorectal cancer. Dis Markers 26, 27-34 https://doi.org/10.1155/2009/921907
  95. Wang B, Li W, Liu H et al (2014) miR-29b suppresses tumor growth and metastasis in colorectal cancer via downregulating Tiam1 expression and inhibiting epithelialmesenchymal transition. Cell Death Dis 5, e1335 https://doi.org/10.1038/cddis.2014.304
  96. Li J, Mao X, Wang X and Miao G (2017) miR-433 reduces cell viability and promotes cell apoptosis by regulating MACC1 in colorectal cancer. Oncol Lett 13, 81-88 https://doi.org/10.3892/ol.2016.5445
  97. Guo ST, Jiang CC, Wang GP et al (2013) MicroRNA-497 targets insulin-like growth factor 1 receptor and has a tumour suppressive role in human colorectal cancer. Oncogene 32, 1910-1920 https://doi.org/10.1038/onc.2012.214
  98. He D, Wang J, Zhang C et al (2015) Down-regulation of miR-675-5p contributes to tumor progression and development by targeting pro-tumorigenic GPR55 in non-small cell lung cancer. Mol Cancer 14, 73 https://doi.org/10.1186/s12943-015-0342-0
  99. Wang Q, Huang Z, Ni S et al (2012) Plasma miR-601 and miR-760 are novel biomarkers for the early detection of colorectal cancer. PLoS One 7, e44398 https://doi.org/10.1371/journal.pone.0044398