DOI QR코드

DOI QR Code

상지로봇치료가 아급성기 뇌졸중 환자의 팔뻗기 움직임에 미치는 단기 효과

Short-term Effect of Robot-assisted Therapy on Arm Reaching in Subacute Stroke Patients

  • 홍원진 (연세대학교 세브란스 재활병원) ;
  • 김용욱 (연세대학교 세브란스 재활병원) ;
  • 김종배 (연세대학교 보건과학대학 작업치료학과) ;
  • 박지혁 (연세대학교 보건과학대학 작업치료학과)
  • Hong, Won-Jin (Dept. of Occupational Therapy, Severance Hospital, Yonsei University) ;
  • Kim, Yong-Wook (Dept. of Occupational Therapy, Severance Hospital, Yonsei University) ;
  • Kim, Jongbae (Dept. of Occupational Therapy, College of Health Science, Yonsei University) ;
  • Park, Ji-Hyuk (Dept. of Occupational Therapy, College of Health Science, Yonsei University)
  • 투고 : 2018.10.19
  • 심사 : 2018.11.03
  • 발행 : 2018.11.30

초록

목적 : 본 연구에서는 상지 로봇 치료가 아급성기 뇌졸중 환자의 상지기능에 단기적으로 미치는 영향을 알아보는 것이었다. 연구방법 : 본 연구는 뇌졸중 편마비 진단을 받고 1회 1시간씩 상지 로봇 치료와 과제 지향적 훈련(task-oriented training)를 받았던 환자 20명의 의무기록을 이용한 후향적 연구로서, 중재 전/후의 3차원 동작분석검사 결과 값을 토대로 두 중재간의 변화량을 비교 하였다. 결과 분석은 기술 통계와 대응표본 t검정을 사용하여 결과 값을 파악 하였다. 결과 : 연구 결과 상지 로봇 치료를 한 경우 팔 뻗기를 하는 동안 팔굽관절 움직임의 순발력, 효율성, 부드러움에서 향상을 보였으며, 과제 지향적 훈련(task-oriented training)과 비교 하였을 때 팔굽관절의 부드러움에서 유의한 차이를 보였다(p<.05). 결론 : 단기적 상지 로봇 치료는 아급성기 뇌졸중 환자의 팔뻗기 시 팔굽관절 움직임에 효과를 보였으며, 추후 장기적인 연구를 통해 상지 기능의 움직임 개선에 대한 효과 입증이 필요하다.

Objective : The purpose of this study was to investigate the short-term effect of robot-assisted therapy to improve upper extremity function in subacute stroke. Method : This study was a retrospective study using the medical record. The subjects were 20 patients who were diagnosis with stroke within 6 months. All patients received general rehabilitation intervention during the experimental period and robot-assisted therapy and task-oriented training. Robot assisted therapy was composed of 1 sessions, 1hour per person and task-oriented training was same. For result analysis, descriptive statistics, paired t-test were used. Results : After intervention, all participants got 3D motion analysis about reaching. For the result, there was statistically significant improvement in smoothness in robot assisted therapy(p<.05). there was no statistically significant difference between robot assisted therapy and task-oriented training in speed, time. In this result, we knew the robot assisted therapy can short term effect in elbow joint during arm reaching. Conclusion : Robot assisted therapy is considered as alternative choice in clinical occupational therapy for improving upper extremity function in subacute stage stroke patients.

키워드

참고문헌

  1. Basteris, A., Nijenhuis, S. M., Stienen, A. H., Buurke, J. H., Prange, G. B., & Amirabdollahian, F. (2014). Training modalities in robot-mediated upper limb rehabilitation in stroke: a framework for classification based on a systematic review. Journal of Neuroeng Rehabiltation, 11, 111. doi: 10.1186/1743-0003-11-111
  2. Bohannon, R. W., & Smith, M. B. (1987). Interrater reliability of a modified Ashworth scale of muscle spasticity. Physio Therapy, 67(2), 206-7. https://doi.org/10.1093/ptj/67.2.206
  3. Colombo, R., Sterpi, I., Mazzone, A., Delconte, C., & Pisano, F. (2012). Robot-aided neurorehabilitation in sub-acute and chronic stroke: Does spontaneous recovery have a limited impact on outcome? NeuroRehabilitation, 33(4), 621-629.
  4. Conroy, S. S., Whitall, J., Dipietro, L., Jones-Lush, L. M., Zhan, M., Finley, M. A., & Bever, C. T. (2011). Effect of gravity on robot-assisted motor training after chronic stroke: A randomized trial. Archives of Physical Medicine and Rehabilitation, 92(11), 1754-1761. doi: 10.1016/j.apmr.2011.06.016
  5. Daly, J. J., Hogan, N., Perepezko, E. M., Krebs, H. I., Rogers, J. M., Goyal, K. S., ... Ruff, R. L. (2005). Response to upper-limb robotics and functional neuromuscular stimulation following stroke. Journal of Rehabilitation Research and Development, 42(6), 723-736. https://doi.org/10.1682/JRRD.2005.02.0048
  6. Duret, C. (2010). Contributions of robotic devices to upper limb poststroke rehabilitation. Rev Neurol (Paris), 166(5), 486-493. doi: 10.1016/j.neurol.2009.10.004
  7. Duret, C., Courtial, O., Grosmaire, A. G., & Hutin, E. (2015). Use of a robotic device for the rehabilitation of severe upper limb paresis in subacute stroke: Exploration of patient/robot interactions and the motor recovery process. Biomed Research International, 2015, 7 doi: 10.1155/2015/482389
  8. Fazekas, G., Horvath, M., Troznai, T., & Toth, A. (2007). Robot-mediated upper limb physiotherapy for patients with spastic hemiparesis: A preliminary study. Journal of Rehabiltation Medicine, 39(7), 580-582. doi:10.2340/16501977-0087
  9. Fugl-Meyer, AR., Jaaksko, L., Leyman, I., Olsson, S., & Steglind, S. (1975). The post-stroke hemiplegic patient. 1. a method for evaluation of physical performance. Scandinavian journal of rehabilitation medicine. 7(1),13-31.
  10. Gladstone, D. J., Danells, C. J., & Black, S. E. (2002). The fugl-meyer assessment of motor recovery after stroke: A critical review of its measurement properties. Neurorehabil Neural Repair, 16(3), 232-240. https://doi.org/10.1177/154596802401105171
  11. Gregson, J. M., Leathley, M., Moore, A. P., Sharma, A. K., Smith, T. L. & Watkins, C. L. (1999). Reliability of the tone assessment scale and the modified ashworth scale as clinical tools for assessing poststroke spasticity. Archives of Physical Medicine Rehabiltation, 80(9), 1013-1016. https://doi.org/10.1016/S0003-9993(99)90053-9
  12. Hsieh, Y. W., Wu, C. Y., Lin, K. C., Yao, G., Wu, K. Y., & Chang, Y. J. (2012). Dose-response relationship of robot-assisted stroke motor rehabilitation: The impact of initial motor status. Stroke, 43(10), 2729-2734. doi:10.1161/strokeaha.112.658807
  13. Husemann, B., Muller, F., Krewer, C., Heller, S., & Koenig, E. (2007). Effects of locomotion training with assistance of a robot-driven gait orthosis in hemiparetic patients after stroke: A randomized controlled pilot study. Stroke, 38, 349-354. https://doi.org/10.1161/01.STR.0000254607.48765.cb
  14. Joo, M. C., Park, H. I., Noh, S. E., Kim, J. H., Kim, H. J., & Jang, C. H. (2014). Effects of robot-assisted armtraining in patients with subacute stroke. Brain & Neurorehabilitation, 7(2), 111. doi:10.12786/bn.2014.7.2.111
  15. Kahn, L. E., Zygman, M. I., Rymer, W. Z., & Reinkensmeyer, D. J. (2006). Robot-assisted reaching exercise promotesarm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of NeuroEngineering and Rehabilitation, 3(1), 12-12. doi: 10.1186/1743-0003-3-12
  16. Kwakkel, G., Kollen, B. J., van der Grond, J., & Prevo, A. J. (2003). Probability of regaining dexterity in the flaccid upper limb: Impact of severity of paresis and time since onset in acute stroke. Stroke, 34(9), 2181-2186. doi: 10.1161/01.str.0000087172.16305.cd
  17. Kwakkel, G., Kollen, B. J., & Krebs, H. I. (2008). Effects of robot-assisted therapy on upper limb recovery after stroke: A systematic review. Neurorehabiltation and Neural Repair, 22(2), 111-121. doi: 10.1177/1545968307305457
  18. Mayr, A., Kofler, M., & Saltuari, L. (2008). ARMOR: an electromechanical robot for upper limb training following stroke. A prospective randomized controlled pilot study. Handchir Mikrochir Plast chir, 40, 66-73. doi:10.1055/s-2007-989425
  19. Mehrholz, J., Hadrich, A., Platz, T., Kugler, J., & Pohl, M. (2012). Electromechanical and robot-assisted arm training for improving generic activities of daily living, arm function, and arm muscle strength after stroke. Cochrane Database Systematic Reviews, 6, Cd006876. doi: 10.1002/14651858.CD006876.pub3
  20. Pollock, A., Farmer, S. E., Brady, M. C., Langhornem, P. Mead, G. E., Mehrholz, J. & Van Wijc, F. (2014). Interventions for improving upper limb function after stroke. Cochrane Database Systematic Reviews, 11, Cd010820. doi: 10.1002/14651858.CD010820.pub2
  21. Prange, G. B., Jannink, M. J., Groothuis-Oudshoorn, C. G., Hermens, H. J., & Ijzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabiltation Research and Development, 43(2), 171-184. https://doi.org/10.1682/JRRD.2005.04.0076
  22. Rah, U. W., Kim, Y. H., Ohn, S. H., Chun, M. H., Kim, M. W., & Shin, M. J. (2014). Clinical practice guideline for stroke rehabilitation in korea 2012. Brain & NeuroRehabilitation, 7(1), 1-75. doi.org/10.12786/bn.2014.7.Suppl1.S1
  23. Sale, P., Franceschini, M., Mazzoleni, S., Palma, E., Agosti, M., & Posteraro, F. (2014). Effects of upper limb robot-assisted therapy on motor recovery in subacute stroke patients. Journal of Neuroengineering and Rehabiltation, 11, 104. doi: 10.1186/1743-0003-11-104
  24. Stanford, J., Moreland, J., Swanson, L. R., Stratford, P. W., & Gowland, C. (1993). Reliability of the Fugl-Meyer assessment for testing motor performance in patients following stroke. Physio Therapy, 73(7), 447-454. https://doi.org/10.1093/ptj/73.7.447
  25. Turchetti, C., Vitiello, N., Trieste, L., Romiti, S. Geisler, E., & Micera, S. (2014). Why effectiveness of robot-mediated neurorehabilitation does not necessarily influence its adoption. IEEE Reviews in Biomedical Engineering, 7, 143-153. doi: 10.1109/rbme.2014.2300234
  26. Wood-Dauphinee, S. L., Williams, J. I., & Shapiro, S. H. (1990). Examining outcome measures in a clinical study of stroke. Stroke, 21(5), 731-739. https://doi.org/10.1161/01.STR.21.5.731
  27. Yoo, D. H., & Kim, S. Y. (2015). Effects of upper limbrobot-assisted therapy in the rehabilitation of stroke patients. Journal of Physical Therapy Science, 27(3), 677-679. doi: 10.1589/jpts.27.677