DOI QR코드

DOI QR Code

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen (High-Performance Ceramics Division, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Sun, Luchao (High-Performance Ceramics Division, Institute of Metal Research, Chinese Academy of Sciences) ;
  • Wang, Jingyang (High-Performance Ceramics Division, Institute of Metal Research, Chinese Academy of Sciences)
  • Received : 2018.11.05
  • Accepted : 2018.11.07
  • Published : 2018.11.30

Abstract

High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

Keywords

References

  1. D. J. Green and R. Colombo, "Cellular Ceramics: Intriguing Structures, Novel Properties, and Innovative Applications," Mrs. Bull., 28 [4] 296-300 (2003). https://doi.org/10.1557/mrs2003.84
  2. M. Scheffler and P. Colombo, Cellular Ceramics: Structure, Manufacturing, Properties and Applications; Weinheim: Wiley-VCH, 2005.
  3. T. Ohji and M. Fukushima, "Macro-Porous Ceramics: Processing and Properties," Int. Mater. Rev., 57 [2] 115-31 (2012). https://doi.org/10.1179/1743280411Y.0000000006
  4. N. Sarkar, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Processing of Particle Stabilized $Al_2TiO_5-ZrTiO_4 Foam to Porous Ceramics," J. Eur. Ceram. Soc., 35 [14] 3969-76 (2015). https://doi.org/10.1016/j.jeurceramsoc.2015.07.004
  5. N. Sarkar, K. S. Lee, J. G. Park, S. Mazumder, C. G. Aneziris, and I. J. Kim, "Mechanical and Thermal Properties of Highly Porous $Al_2TiO_5$-Mullite Ceramics," Ceram. Int., 42 [2] 3548-55 (2016). https://doi.org/10.1016/j.ceramint.2015.11.002
  6. L. J. Gauckler, M. M. Waeber, C. Conti, and M. Jacobduliere, "Ceramic Foam for Molten-Metal Filtration," JOM, 37 [9] 47-50 (1985). https://doi.org/10.1007/BF03258640
  7. P. Colombo, "Ceramic foams: Fabrication, Properties and Applications," Key Eng. Mater., 206-213 1913-18 (2002).
  8. J. Kitagawa, T. Hijikata, and K. Ishikawa, "Ceramic Honeycomb Filter for Purifying Exhaust Gases"; U.S. Patent 4,857,089, 1989.
  9. P. Colombo, "In Praise of Pores," Science, 322 [5900] 381-83 (2008). https://doi.org/10.1126/science.322.5898.38
  10. N. Sarkar, J. G. Park, S. Mazumder, A. Pokhrel, C. G. Aneziris, and I. J. Kim, "Effect of Amphiphile Chain Length on Wet Foam Stability of Porous Ceramics," Ceram. Int., 41 [3] 4021-27 (2015). https://doi.org/10.1016/j.ceramint.2014.11.089
  11. H. Xu, J. C. Liu, A. R. Guo, H. Y. Du, and Z. G. Hou, "Porous Silica Ceramics with Relatively High Strength and Novel Bi-Modal Pore Structure Prepared by a TBAbased Gel-Casting Method," Ceram. Int., 38 [2] 1725-29 (2012). https://doi.org/10.1016/j.ceramint.2011.09.013
  12. S. Mishra, R. Mitra, and M. Vijayakumar, "Structure-Property Correlation in Cellular Silica Processed through Hydrophobized Fused Silica Powder for Aerospace Application," J. Alloy. Compd., 504 [1] 76-82 (2010). https://doi.org/10.1016/j.jallcom.2010.05.056
  13. H. Xu, J. C. Liu, H. Y. Du, A. R. Guo, and Z. G. Hou, "Preparation of Porous Silica Ceramics with Relatively High Strength by a TBA-based Gel-Casting Method," Chem. Eng. J., 183 504-9 (2012). https://doi.org/10.1016/j.cej.2011.12.049
  14. T. Shimizu, K. Matsuura, H. Furue, and K. Matsuzak, "Thermal Conductivity of High Porosity Alumina Refractory Bricks Made by a Slurry Gelation and Foaming Method," J. Eur. Ceram. Soc., 33 [15-16] 3429-35 (2013). https://doi.org/10.1016/j.jeurceramsoc.2013.07.001
  15. B. Nait-Ali, K. Haberko, H. Vesteghem, J. Absi, and D. S. Smith, "Preparation and Thermal Conductivity Characterisation of Highly Porous Ceramics: Comparison between Experimental Results, Analytical Calculations and Numerical Simulations," J. Eur. Ceram. Soc., 27 [2-3] 1345-50 (2007). https://doi.org/10.1016/j.jeurceramsoc.2006.04.025
  16. K. Mohanta, A. Kumar, O. Parkash, and D. Kumar, "Low Cost Porous Alumina with Tailored Microstructure and Thermal Conductivity Prepared Using Rice Husk and Sucrose," J. Am. Ceram. Soc., 97 [6] 1708-19 (2014). https://doi.org/10.1111/jace.12946
  17. L. L. Gong, Y. H. Wang, X. D. Cheng, R. F. Zhang, and H. P. Zhang, "Thermal Conductivity of Highly Porous Mullite Materials," Int. J. Heat Mass Transfer, 67 253-59 (2013). https://doi.org/10.1016/j.ijheatmasstransfer.2013.08.008
  18. J. H. She and T. Ohji, "Fabrication and Characterization of Highly Porous Mullite Ceramics," Mater. Chem. Phys., 80 [3] 610-14 (2003). https://doi.org/10.1016/S0254-0584(03)00080-4
  19. Y. F. Gu, X. Q. Liu, G. Y. Meng, and D. K. Peng, "Porous YSZ Ceramics by Water-based Gelcasting," Ceram. Int., 25 [8] 705-9 (1999).
  20. L. F. Hu and C. A. Wang, "Effect of Sintering Temperature on Compressive Strength of Porous Yttria-Stabilized Zirconia Ceramics," Ceram. Int., 36 [5] 1697-701 (2010). https://doi.org/10.1016/j.ceramint.2010.03.009
  21. E. M. Levin, C. R. Robbins, and H. F. McMurdie, Phase Diagrams for Ceramists (1969 Supplement); p. 76, The American Ceramic Society Inc., Columbus, Ohio, 1969.
  22. Z. Q. Sun, Y. C. Zhou, J. Y. Wang, and M. S. Li, "Thermal Properties and Thermal Shock Resistance of $\gamma$-$Y_2Si_2O_7$," J. Am. Ceram. Soc., 91 [8] 2623-29 (2008). https://doi.org/10.1111/j.1551-2916.2008.02470.x
  23. Z. Q. Sun, M. S. Li, and Y. C. Zhou, "Recent Progress on Synthesis, Multi-Scale Structure, and Properties of Y-Si-O Oxides," Int. Mater. Rev., 59 [7] 357-83 (2014). https://doi.org/10.1179/1743280414Y.0000000033
  24. Z. L. Tian, L. Y. Zheng, J. M. Wang, P. Wan, J. N. Li, and J. Y. Wang, "Theoretical and Experimental Determination of the Major Thermo-Mechanical Properties of $RE_2SiO_5$ (RE = Tb, Dy, Ho, Er, Tm, Yb, Lu, and Y) for Environmental and Thermal Barrier Coating Applications," J. Eur. Ceram. Soc., 36 [1] 189-202 (2016). https://doi.org/10.1016/j.jeurceramsoc.2015.09.013
  25. D. Y. Li and M. S. Li, "Porous $Y_2SiO_5$ Ceramic with Low Thermal Conductivity," J. Mater. Sci. Technol., 28 [9] 799-802 (2012). https://doi.org/10.1016/S1005-0302(12)60133-9
  26. Z. G. Hou, J. C. Liu, H. Y. Du, H. Xu, A. R. Guo, and M. Wang, "Preparation of Porous $Y_2SiO_5$ Ceramics with Relatively High Compressive Strength and Ultra-Low Thermal Conductivity by a TBA-based Gel-Casting Method," Ceram. Int., 39 [2] 969-76 (2013). https://doi.org/10.1016/j.ceramint.2012.07.014
  27. R. B. Zhang, D. N. Fang, X. M. Chen, Y. M. Pei, Z. D. Wang, and Y. S. Wang, "Microstructure and Properties of Highly Porous $Y_2SiO_5$ Ceramics Produced by a New Waterbased Freeze Casting," Mater. Design, 46 746-50 (2013). https://doi.org/10.1016/j.matdes.2012.11.020
  28. Z. Wu, L. C. Sun, and J. Y. Wang, "Effects of Sintering Method and Sintering Temperature on the Microstructure and Properties of Porous $Y_2SiO_5$," J. Mater. Sci. Technol., 31 [12] 1237-43 (2015). https://doi.org/10.1016/j.jmst.2015.09.016
  29. Z. Wu, L. C. Sun, Z. L. Tian, J. Y. Wang, J. N. Li, and Z. J. Hu, "Preparation and Properties of Reticulated Porous $\gamma$- $Y_2Si_2O_7$ Ceramics with High Porosity and Relatively High Strength," Ceram. Int., 40 [7] 10013-20 (2014). https://doi.org/10.1016/j.ceramint.2014.02.100
  30. Z. Wu, L. C. Sun, J. J. Pan, and J. Y. Wang, "Fiber Reinforced Highly Porous $\gamma$-$Y_2Si_2O_7$ Ceramic Fabricated by Foam-Gelcasting-Freeze Drying Method," Scr. Mater., 146 331-34 (2018). https://doi.org/10.1016/j.scriptamat.2017.12.017
  31. Z. Wu, W. P. Hu, Y. X. Luo, L. C. Sun, and J. Y. Wang, "Porous $\gamma$-$(Y_{1-x}Ho_x)_2Si_2O_7$ Thermal Insulator with Excellent High-Temperature Strength Retention and Very Low Thermal Conductivity," J. Eur. Ceram. Soc., 38 [9] 3347-53 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.027
  32. F. F. Lange, S. C. Singhal, and R. C. Kuznicki, "Phase Relations and Stability Studies in $Si_3N_4$-$SiO_2$-$Y_2O_3$ Pseudoternary System," J. Am. Ceram. Soc., 60 [5-6] 249-52 (1977). https://doi.org/10.1111/j.1151-2916.1977.tb14118.x
  33. L. J. Gauckler, H. Hohnke, and T. Y. Tien, "The System Si3N4-$SiO_2$-$Y_2O_3$," J. Am. Ceram. Soc., 63 [1-2] 35-37 (1980). https://doi.org/10.1111/j.1151-2916.1980.tb10644.x
  34. J. W. Nowok, J. P. Kay, and R. J. Kulas, "Thermal Expansion and High-Temperature Phase Transformation of the Yttrium Silicate $Y_2SiO_5$," J. Mater. Res., 16 [8] 2251-55 (2001). https://doi.org/10.1557/JMR.2001.0309
  35. J. G. Wang, S. J. Tian, G. B. Li, F. H. Liao, and X. P. Jing, "Preparation and X-ray Characterization of Low-Temperature Phases of $R_2SiO_5$ (R = rare earth elements)," Mater. Res. Bull., 36 [10] 1855-61 (2001). https://doi.org/10.1016/S0025-5408(01)00664-X
  36. J. Felsche, "The Crystal Chemistry of the Rare Earth Silicates," Struct. Bonding, 13 99-197 (1973).
  37. R. B. Zhang, B. Y. Han, D. N. Fang, and Y. H. Wang, "Porous $Y_2SiO_5$ Ceramics with a Centrosymmetric Structure Produced by Freeze Casting," Ceram. Int., 41 [9] 11517-22 (2015). https://doi.org/10.1016/j.ceramint.2015.05.099
  38. R. J. He, Z. L. Qu, and X. M. Cheng, "Effects of Starch Addition Amount on Microstructure, Mechanical Properties and Room Temperature Thermal Conductivity of Porous $Y_2SiO_5$ Ceramics," Ceram. Int., 42 [2] 2257-62 (2016). https://doi.org/10.1016/j.ceramint.2015.10.019
  39. Z. Wu, L. C. Sun, J. J. Pan, and J. Y. Wang, "Highly Porous $Y_2SiO_5$ Ceramic with Extremely Low Thermal Conductivity Prepared by Foam-Gelcasting-Freeze Drying Method," J. Am. Ceram. Soc., 101 [3] 1042-47 (2018). https://doi.org/10.1111/jace.15330
  40. Z. Wu, L. C. Sun, P. Wan, J. N. Li, Z. J. Hu, and J. Y. Wang, "In situ Foam-Gelcasting Fabrication and Properties of Highly Porous $\gamma$-$Y_2Si_2O_7$ Ceramic with Multiple Pore Structures," Scr. Mater., 103 6-9 (2015). https://doi.org/10.1016/j.scriptamat.2015.02.024
  41. R. B. Zhang, B. Y. Han, and D. N. Fang, "New Multifunctional Porous $Yb_2SiO_5$ Ceramics Prepared by Freeze Casting," Ceram. Int., 42 [5] 6046-53 (2016). https://doi.org/10.1016/j.ceramint.2015.12.161
  42. B. Y. Han, R. B. Zhang, and D. N. Fang, "Preparation and Characterization of Highly Porous $Yb_2SiO_5$ Ceramics Using Water-based Freeze-Casting," J. Porous Mat., 23 [2] 563-68 (2016). https://doi.org/10.1007/s10934-015-0110-y
  43. Z. Wu, W. P. Hu, Y. X. Luo, L. C. Sun, and J. Y. Wang, "Porous $\gamma$-$(Y_{1-x}Ho_x)_2Si_2O_7$ Thermal Insulator with Excellent High-Temperature Strength Retention and Very Low Thermal Conductivity," J. Eur. Ceram. Soc., 38 [9] 3347-53 (2018). https://doi.org/10.1016/j.jeurceramsoc.2018.02.027
  44. C. Michel, G. Buisson, and E. F. Bertaut, "Structure de $Y_2SiO_5$," CR. Hebd. Des. Sean. De L Acad. Sci. Serie. B, 264 [5] 397-99 (1967).
  45. Y. X. Luo, J. M. Wang, J. Y. Wang, J. N. Li, and Z. J. Hu, "Theoretical Predictions on Elastic Stiffness and Intrinsic Thermal Conductivities of Yttrium Silicates," J. Am. Ceram. Soc., 97 [3] 945-51 (2014). https://doi.org/10.1111/jace.12764
  46. Z. L. Tian, C. F. Lin, L. Y. Zheng, L. C. Sun, J. L. Li, and J. Y. Wang, "Defect-Mediated Multiple-Enhancement of Phonon Scattering and Decrement of Thermal Conductivity in $(Y_xYb_{1-x})_2SiO_5$ Solid Solution," Acta Mater., 144 292-304 (2018). https://doi.org/10.1016/j.actamat.2017.10.064
  47. Y. Ogura, M. Kondo, T. Morimoto, A. Notomi, and T. Sekigawa, "Oxygen Permeability of $Y_2SiO_5$," Mater. Trans., 42 [6] 1124-30 (2001). https://doi.org/10.2320/matertrans.42.1124
  48. W. Y. Ching, L. Z. Ouyang, and Y. N. Xu, "Electronic and Optical Properties of $Y_2SiO_5$ and $Y_2Si_2O_7$ with Comparisons to ${\alpha}$-$SiO_2$ and $Y_2O_3$," Phys. Rev. B, 67 [24] 245108 (2003). https://doi.org/10.1103/PhysRevB.67.245108
  49. J. D. Webster, M. E. Westwood, F. H. Hayes, R. J. Day, R. Taylor, A. Duran, M. Aparicio, K. Rebstock, and W. D. Vogel, "Oxidation Protection Coatings for C/SiC based on Yttrium Silicate," J. Eur. Ceram. Soc., 18 [16] 2345-50 (1998). https://doi.org/10.1016/S0955-2219(98)00241-6
  50. M. Aparicio and A. Duran, "Yttrium Silicate Coatings for Oxidation Protection of Carbon-Silicon Carbide Composites," J. Am. Ceram. Soc., 83 [6] 1351-55 (2000). https://doi.org/10.1111/j.1151-2916.2000.tb01392.x
  51. Z. Q. Sun, J. Y. Wang, M. S. Li, and Y. C. Zhou, "Mechanical Properties and Damage Tolerance of $Y_2SiO_5$," J. Eur. Ceram. Soc., 28 [15] 2895-901 (2008). https://doi.org/10.1016/j.jeurceramsoc.2008.04.029
  52. Z. Q. Sun, M. S. Li, and Y. C. Zhou, "Thermal Properties of Single-Phase $Y_2SiO_5$," J. Eur. Ceram. Soc., 29 [4] 551-57 (2009). https://doi.org/10.1016/j.jeurceramsoc.2008.07.026
  53. H. M. Xiang, Z. H. Feng, and Y. C. Zhou, "Mechanical and Thermal Properties of $Yb_2SiO_5$: First-Principles Calculations and Chemical Bond Theory Investigations," J. Mater. Res., 29 [15] 1609-19 (2014). https://doi.org/10.1557/jmr.2014.201
  54. K. N. Lee, D. S. Fox, and N. P. Bansal, "Rare Earth Silicate Environmental Barrier Coatings for SiC/SiC Composites and Si3N4 Ceramics," J. Eur. Ceram. Soc., 25 [10] 1705-15 (2005). https://doi.org/10.1016/j.jeurceramsoc.2004.12.013
  55. H. Klemm, "Silicon Nitride for High-Temperature Applications," J. Am. Ceram. Soc., 93 [6] 1501-22 (2010). https://doi.org/10.1111/j.1551-2916.2010.03839.x
  56. J. Felsche, "Crystal Data on Polymorphic Disilicate $Y_2Si_2O_7$," Naturwissenschaften, 57 [3] 127-28 (1970). https://doi.org/10.1007/BF00600050
  57. J. Ito and H. Johnson, "Synthesis and Study of Yttrialite," Am. Mineral., 53 [11-1] 1940-52 (1968).
  58. J. Y. Wang, Y. C. Zhou, and Z. J. Lin, "Mechanical Properties and Atomistic Deformation Mechanism of $\gamma$-$Y_2Si_2O_7$ from First-Principles Investigations," Acta Mater., 55 [17] 6019-26 (2007). https://doi.org/10.1016/j.actamat.2007.07.010
  59. Z. Q. Sun, Y. C. Zhou, J. Y. Wang, and M. S. Li, "$\gamma$-$Y_2Si_2O_7$, a Machinable Silicate Ceramic: Mechanical Properties and Machinability," J. Am. Ceram. Soc., 90 [8] 2535-41 (2007). https://doi.org/10.1111/j.1551-2916.2007.01803.x
  60. Z. Q. Sun, M. S. Li, and Y. C. Zhou, "Kinetics and Mechanism of Hot Corrosion of $\gamma$-$Y_2Si_2O_7$ in Thin-Film $Na_2SO_4$ Molten Salt," J. Am. Ceram. Soc., 91 [7] 2236-42 (2008). https://doi.org/10.1111/j.1551-2916.2008.02439.x
  61. Z. Q. Sun, M. S. Li, Z. P. Li, and Y. C. Zhou, "Hot Corrosion of $\gamma$-$Y_2Si_2O_7$ in Strongly Basic $Na_2CO_3$ Molten Salt Environment," J. Eur. Ceram. Soc., 28 [1] 259-65 (2008). https://doi.org/10.1016/j.jeurceramsoc.2007.05.011
  62. Z. L. Tian, L. Y. Zheng, Z. J. Li, J. L. Li, and J. Y. Wang, "Exploration of the Low Thermal Conductivities of $\gamma$- $Y_2Si_2O_7$, $\beta$-$Y_2Si_2O_7$, $\beta$-$Yb_2Si_2O_7$, and $\beta$-$Lu_2Si_2O_7$ as Novel Environmental Barrier Coating Candidates," J. Eur. Ceram. Soc., 36 [11] 2813-23 (2016). https://doi.org/10.1016/j.jeurceramsoc.2016.04.022
  63. Y. G. Liu, P. Peng, M. H. Fang, and Z. H. Huang, "$Y_{3-x}Er_x-Al_5O_{12}$ Aluminate Ceramics: Preparation, Thermal Properties and Theoretical Model of Thermal Conductivity," Adv. Eng. Mater., 14 [3] 170-77 (2012). https://doi.org/10.1002/adem.201100122
  64. L. Guo, H. Guo, H. Peng, and S. K. Gong, "Thermophysical Properties of $Yb_2O_3$ Doped $Gd_2Zr_2O_7$ and Thermal Cycling Durability of ($Gd_{0.9}Yb_{0.1})_2Zr_2O_7$/YSZ Thermal Barrier Coatings," J. Eur. Ceram. Soc., 34 [5] 1255-63 (2014). https://doi.org/10.1016/j.jeurceramsoc.2013.11.035
  65. M. W. Barsoum, M. Ali, and T. El-Raghy, "Processing and Characterization of $Ti_2AlC$, $Ti_2AlN$, and $Ti_2AlC_{0.5}N_{0.5}$," Metall. Mater. Trans. A, 31 [7] 1857-65 (2000). https://doi.org/10.1007/s11661-006-0243-3
  66. F. L. Meng, Y. C. Zhou, and J. Y. Wang, "Strengthening of $Ti_2AlC$ by Substituting Ti with V," Scr. Mater., 53 [12] 1369-72 (2005). https://doi.org/10.1016/j.scriptamat.2005.08.030
  67. Y. C. Zhou, J. X. Chen, and J. Y. Wang, "Strengthening of $Ti_3Al_2$ by Incorporation of Si to form $Ti_3Al_{1-x}Si_xC_2$ Solid Solutions," Acta Mater., 54 [5] 1317-22 (2006). https://doi.org/10.1016/j.actamat.2005.10.057
  68. Z. Wu, L. C. Sun, and J. Y. Wang, "Synthesis and Characterization of Porous $Y_2SiO_5$ with Low Linear Shrinkage, High Porosity and High Strength," Ceram. Int., 42 [13] 14894-902 (2016). https://doi.org/10.1016/j.ceramint.2016.06.128
  69. R. B. Zhang, Q. Qu, B. Y. Han, and B. L. Wang, "A Novel Silica Aerogel/Porous $Y_2SiO_5$ Ceramics with Low Thermal Conductivity and Enhanced Mechanical Properties Prepared by Freeze Casting and Impregnation," Mater. Lett., 175 219-22 (2016). https://doi.org/10.1016/j.matlet.2016.04.051
  70. R. B. Zhang, S. H. Li, and C. S. Ye, "Fabrication and Properties of Machinable Porous $ZrO_{2f}/Y_2SiO_5$ Nanocomposites Prepared by a Simple Method," J. Alloys Compd., 712 445-50 (2017). https://doi.org/10.1016/j.jallcom.2017.04.136
  71. R. F. Chen, C. A. Wang, Y. Huang, L. G. Ma, and W. Y. Lin, "Ceramics with Special Porous Structures Fabricated by Freeze-Gelcasting: Using Tert-Butyl Alcohol as a Template," J. Am. Ceram. Soc., 90 [11] 3478-84 (2007). https://doi.org/10.1111/j.1551-2916.2007.01957.x
  72. R. F. Chen, Y. Huang, C. A. Wang, and J. Q. Qi, "Ceramics with Ultra-Low Density Fabricated by Gelcasting: An Unconventional View," J. Am. Ceram. Soc., 90 [11] 3424-29 (2007). https://doi.org/10.1111/j.1551-2916.2007.01915.x
  73. J. L. Yang, J. L. Yu, and Y. Huang, "Recent Developments in Gelcasting of Ceramics," J. Eur. Ceram. Soc., 31 [14] 2569-91 (2011). https://doi.org/10.1016/j.jeurceramsoc.2010.12.035
  74. L. F. Hu, C. A. Wang, and Y. Huang, "Porous Yttria- Stabilized Zirconia Ceramics with Ultra-Low Thermal Conductivity," J. Mater. Sci., 45 [12] 3242-46 (2010). https://doi.org/10.1007/s10853-010-4331-9
  75. S. Akamine and M. Fujita, "Controlling Heat Radiation for Development of High-Temperature Insulating Materials," J. Eur. Ceram. Soc., 34 [15] 4031-36 (2014). https://doi.org/10.1016/j.jeurceramsoc.2014.05.037
  76. D. N. Trivic, T. J. O'Brien, and C. H. Amon, "Modeling the Radiation of Anisotropically Scattering Media by Coupling Mie Theory with Finite Volume Method," Int. J. Heat Mass Tran., 47 [26] 5765-80 (2004). https://doi.org/10.1016/j.ijheatmasstransfer.2004.07.035
  77. J. J. Zhao, Y. Y. Duan, X. D. Wang, X. R. Zhang, Y. H. Han, Y. B. Gao, Z. H. Lv, H. T. Yu, and B. X. Wang, "Optical and Radiative Properties of Infrared Opacifier Particles Loaded in Silica Aerogels for High Temperature Thermal Insulation," Int. J. Therm. Sci., 70 54-64 (2013).
  78. L. J. Gibson and M. F. Ashby, Cellular Solids: Structure and Properties; Cambridge: Cambridge University Press, 1997.
  79. E. Ryshkewitch, "Compression Strength of Porous Sintered Alumina and Zirconia," J. Am. Ceram. Soc., 36 [2] 65-68 (1953). https://doi.org/10.1111/j.1151-2916.1953.tb12837.x
  80. T. Fukasawa, M. Ando, T. Ohji, and S. Kanzaki, "Synthesis of Porous Ceramics with Complex Pore Structure by Freeze-Dry Processing," J. Am. Ceram. Soc., 84 [1] 230-32 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00638.x
  81. Y. Zhang, K. H. Zuo, and Y. P. Zeng, "Effects of Gelatin Addition on the Microstructure of Freeze-Cast Porous Hydroxyapatite Cerarmics," Ceram. Int., 35 [6] 2151-54 (2009). https://doi.org/10.1016/j.ceramint.2008.11.022
  82. U. G. K. Wegst, M. Schecter, A. E. Donius, and P. M. Hunger, "Biomaterials by Freeze Casting," Philos. Trans. R. Soc., A, 368 [1917] 2099-121 (2010). https://doi.org/10.1098/rsta.2010.0014
  83. L. F. Hu, C. A. Wang, Y. Huang, C. C. Sun, S. Lu, and Z. J. Hu, "Control of Pore Channel Size during Freeze Casting of Porous YSZ Ceramics with Unidirectionally Aligned Channels Using Different Freezing Temperatures," J. Eur. Ceram. Soc., 30 [16] 3389-96 (2010). https://doi.org/10.1016/j.jeurceramsoc.2010.07.032
  84. O. Lyckfeldt and J. M. F. Ferreira, "Processing of Porous Ceramics by 'Starch Consolidation'," J. Eur. Ceram. Soc., 18 [2] 131-40 (1998). https://doi.org/10.1016/S0955-2219(97)00101-5
  85. H. M. Alves, G. Tarì, A. T. Fonseca, and J. M. F. Ferreira, "Processing of Porous Cordierite Bodies by Starch Consolidation," Mater. Res. Bull., 33 [10] 1439-48 (1998). https://doi.org/10.1016/S0025-5408(98)00131-7
  86. H. L. Zhang, J. F. Li, and B. P. Zhang, "Microstructure and Electrical Properties of Porous PZT Ceramics Derived from Different Pore-Forming Agents," Acta Mater., 55 [1] 171-81 (2007). https://doi.org/10.1016/j.actamat.2006.07.032
  87. L. N. Wu, Y. D. Huang, Z. J. Wang, and L. Liu, "Controlled Fabrication of Porous $Al_2O_3$ Ceramic by N,N'-Dimethylformamide-based Gel-Casting," Scr. Mater., 62 [8] 602-5 (2010). https://doi.org/10.1016/j.scriptamat.2010.01.007
  88. L. Qian and H. F. Zhang, "Controlled Freezing and Freeze Drying: A Versatile Route for Porous and Micro-/Nano- Structured Materials," J. Chem. Technol. Biotechnol., 86 [2] 172-84 (2011). https://doi.org/10.1002/jctb.2495
  89. M. H. Ho, P. Y. Kuo, H. J. Hsieh, T. Y. Hsien, L. T. Hou, J. Y. Lai, and D. M. Wang, "Preparation of Porous Scaffolds by Using Freeze-Extraction and Freeze-Gelation Methods," Biomaterials, 25 [1] 129-38 (2004). https://doi.org/10.1016/S0142-9612(03)00483-6
  90. A. S. Dorcheh and M. H. Abbasi, "Silica Aerogel; Synthesis, Properties and Characterization," J. Mater. Process. Technol., 199 [1-3] 10-26 (2008). https://doi.org/10.1016/j.jmatprotec.2007.10.060
  91. M. Schmidt and F. Schwertfeger, "Applications for Silica Aerogel Products," J. Non-Cryst. Solids, 225 [1] 364-68 (1998). https://doi.org/10.1016/S0022-3093(98)00054-4
  92. A. C. Pierre and G. M. Pajonk, "Chemistry of Aerogels and Their Applications," Chem. Rev., 102 [11] 4243-65 (2002). https://doi.org/10.1021/cr0101306
  93. M. Diaz, C. Pecharroman, F. del Monte, J. Sanz, J. E. Iglesias, J. S. Moya, C. Yamagata, and S. Mello-Castanho, "Synthesis, Thermal Evolution, and Luminescence Properties of Yttrium Disilicate Host Matrix," Chem. Mater., 17 [7] 1774-82 (2005). https://doi.org/10.1021/cm047957b
  94. S. Kumar and C. H. Drummond, "Crystallization of Various Compositions in the $Y_2O_3$-$SiO_2$ System," J. Mater. Res., 7 [4] 997-1003 (1992). https://doi.org/10.1557/JMR.1992.0997
  95. Z. Q. Sun, Y. C. Zhou, and M. S. Li, "Low-Temperature Synthesis and Sintering of $\gamma$-$Y_2Si_2O_7$," J. Mater. Res., 21 [6] 1443-50 (2006). https://doi.org/10.1557/jmr.2006.0173
  96. T. Fukasawa, Z. Y. Deng, M. Ando, T. Ohji, and S. Kanzaki, "Synthesis of Porous Silicon Nitride with Unidirectionally Aligned Channels Using Freeze-Drying Process," J. Am. Ceram. Soc., 85 [9] 2151-55 (2002). https://doi.org/10.1111/j.1151-2916.2002.tb00426.x
  97. X. W. Zhu, D. L. Jiang, and S. H. Tan, "Preparation of Silicon Carbide Reticulated Porous Ceramics," Mater. Sci. Eng., A, 323 [1-2] 232-38 (2002). https://doi.org/10.1016/S0921-5093(01)01352-1
  98. R. Barea, M. I. Osendi, J. M. F. Ferreira, and P. Miranzo, "Thermal Conductivity of Highly Porous Mullite Material," Acta Mater., 53 [11] 3313-18 (2005). https://doi.org/10.1016/j.actamat.2005.03.040
  99. P. Sepulveda and J. G. P. Binner, "Processing of Cellular Ceramics by Foaming and in situ Polymerisation of Organic Monomers," J. Eur. Ceram. Soc., 19 [12] 2059-66 (1999). https://doi.org/10.1016/S0955-2219(99)00024-2
  100. S. Joschek, B. Nies, R. Krotz, and A. Gopferich, "Chemical and Physicochemical Characterization of Porous Hydroxyapatite Ceramics Made of Natural Bone," Biomaterials, 21 [16] 1645-58 (2000). https://doi.org/10.1016/S0142-9612(00)00036-3
  101. M. Fukushima and Y. I. Yoshizawa, "Fabrication of Highly Porous Silica Thermal Insulators Prepared by Gelation-Freezing Route," J. Am. Ceram. Soc., 97 [3] 713-17 (2014). https://doi.org/10.1111/jace.12723
  102. Z. Wu, L. C. Sun, P. Wan, and J. Y. Wang, "Preparation, Microstructure and High Temperature Performances of Porous $\gamma$-$Y_2Si_2O_7$ by in situ Foam-Gelcasting Using Gelatin," Ceram. Int., 41 [10, Part B] 14230-38 (2015). https://doi.org/10.1016/j.ceramint.2015.07.051
  103. X. W. Zhu, D. L. Jiang, and S. H. Tan, "Reaction Bonding of Open Cell SiC-$Al_2O_3$ Composites," Mater. Res. Bull., 36 [11] 2003-15 (2001). https://doi.org/10.1016/S0025-5408(01)00671-7
  104. X. W. Zhu, D. L. Jiang, S. H. Tan, and Z. Q. Zhang, "Improvement in the Strut Thickness of Reticulated Porous Ceramics," J. Am. Ceram. Soc., 84 [7] 1654-56 (2001). https://doi.org/10.1111/j.1151-2916.2001.tb00895.x
  105. I. Nettleship, "Applications of Porous Ceramics," Key Eng. Mater., 122-124 305-24 (1996). https://doi.org/10.4028/www.scientific.net/KEM.122-124.305
  106. U. Soy, A. Demir, and F. Caliskan, "Effect of Bentonite Addition on Fabrication of Reticulated Porous SiC Ceramics for Liquid Metal Infiltration," Ceram. Int., 37 [1] 15-19 (2011). https://doi.org/10.1016/j.ceramint.2010.07.028
  107. Y. W. Kim, Y. J. Jin, Y. S. Chun, I. H. Song, and H. D. Kim, "A Simple Pressing Route to Closed-Cell Microcellular Ceramics," Scr. Mater., 53 [8] 921-25 (2005). https://doi.org/10.1016/j.scriptamat.2005.06.032
  108. M. R. Winter and D. R. Clarke, "Oxide Materials with Low Thermal Conductivity," J. Am. Ceram. Soc., 90 [2] 533-40 (2007). https://doi.org/10.1111/j.1551-2916.2006.01410.x

Cited by

  1. Binder-Free Cathode for Thermal Batteries Fabricated Using FeS 2 Treated Metal Foam vol.7, pp.None, 2018, https://doi.org/10.3389/fchem.2019.00904
  2. Influence of Grains Shape Irregularity in Porous Ceramics—Numerical Study vol.13, pp.8, 2018, https://doi.org/10.3390/ma13081944