DOI QR코드

DOI QR Code

Simultaneous Control of Phase Transformation and Crystal of Amorphous TiO2 Coating on MWCNT Surface

  • Cha, Yoo Lim (Department of Chemical and Biological Engineering, Gachon University) ;
  • Park, Il Han (Future Industry R&D Center, DH Holdings Co., LTD) ;
  • Moon, Kyung Hwan (Future Industry R&D Center, DH Holdings Co., LTD) ;
  • Kim, Dong Hwan (Future Industry R&D Center, DH Holdings Co., LTD) ;
  • Jung, Seung Il (Future Industry R&D Center, DH Holdings Co., LTD) ;
  • Yoon, Young Soo (Department of Chemical and Biological Engineering, Gachon University)
  • Received : 2018.09.13
  • Accepted : 2018.11.03
  • Published : 2018.11.30

Abstract

We developed a mass production method that simultaneously controls the phase transformation and crystal size of $TiO_2$ coatings on multiwalled carbon nanotubes (MWCNTs). Initially, MWCNTs were successfully coated with amorphous 15-20-nm-thick $TiO_2$ by an in-situ sol-gel method. As the calcination temperature increased in both air and argon atmospheres, the amorphous $TiO_2$ was gradually transformed into the fully anatase phase at approximately $600^{\circ}C$, a mixture of the anatase and rutile phases at approximately $700^{\circ}C$, and the fully rutile phase above approximately $800^{\circ}C$. The crystal size increased with increasing calcination temperature. Moreover, above $600^{\circ}C$, the size of crystals formed in air was approximately twice that of crystals formed in argon. The reason is thought to be that MWCNTs, which continuously supported the stresses associated with the reconstructive phase transformation, disappeared owing to complete oxidation in air at these high temperatures.

Keywords

References

  1. B.-M. Lee, D.-Y. Shin, and S.-M. Han, "Synthesis of Hydrous $TiO_2$ Powder by Dropping Precipitant Method and Photocatalytic Properties," J. Korean Ceram. Soc., 37 [4] 308-13 (2000).
  2. Y. Ou, J. Lin, S. Fang, and D. Liao, "MWNT-$TiO_2$: Ni Composite Catalyst: A New Class of Catalyst for Photocatalytic $H_2$ Evolution from Water under Visible Light Illumination," Chem. Phys. Lett., 429 [1-3] 199-203 (2006). https://doi.org/10.1016/j.cplett.2006.08.024
  3. A. R. Gandhe, J. B. Fernandes, S. Varma, and N. M. Gupta, "$TiO_2$: As a Versatile Catalyst for the Ortho-Selective Methylation of Phenol," J. Mol. Catal. A: Chem., 238 [1-2] 63-71 (2005). https://doi.org/10.1016/j.molcata.2005.05.011
  4. D. Eder and R. Kramer, "Electric Impedance Spectroscopy of Titania: Influence of Gas Treatment and of Surface Area," J. Phys. Chem. B, 108 [39] 14823-29 (2004). https://doi.org/10.1021/jp0367373
  5. W. Wang, P. Serp, P. Kalck, C. G. Silva, and J. L. Faria, "Preparation and Characterization of Nanostructured MWCNT-$TiO_2$ Composite Materials for Photocatalytic Water Treatment Applications," Mater. Res. Bull., 43 [4] 958-67 (2008). https://doi.org/10.1016/j.materresbull.2007.04.032
  6. A. Kongkanand, R. M. Dominguez, and P. V. Kamat, "Single Wall Carbon Nanotube Scaffolds for Photoelectrochemical Solar Cells. Capture and Transport of Photogenerated Electrons," Nano Lett., 7 [3] 676-80 (2007). https://doi.org/10.1021/nl0627238
  7. A. L. M. Reddy and S. Ramaprabhu, "Nanocrystalline Metal Oxides Dispersed Multiwalled Carbon Nanotubes as Supercapacitor Electrodes," J. Phys. Chem. C, 111 [21] 7727-34 (2007). https://doi.org/10.1021/jp069006m
  8. O. Frank, M. Kalbac, L. Kavan, M. Zukalova, J. Prochazka, M. Klementova, and L. Dunsch, "Structural Properties and Electrochemical Behavior of CNT-$TiO_2$ Nanocrystal Heterostructures," Phys. Status Solidi B, 244 [11] 4040-45 (2007). https://doi.org/10.1002/pssb.200776158
  9. D. He, L. Yang, S. Kuang, and Q. Cai, "Fabrication and Catalytic Properties of Pt and Ru Decorated $TiO_2$/CNTs Catalyst for Methanol Electrooxidation," Electrochem. Commun., 9 [10] 2467-72 (2007). https://doi.org/10.1016/j.elecom.2007.07.025
  10. H. Song, X. Qiu, and F. Li, "Effect of Heat Treatment on the Performance of $TiO_2$-Pt/CNT Catalysts for Methanol Electro-Oxidation," Electrochim. Acta., 53 [10] 3708-13 (2008). https://doi.org/10.1016/j.electacta.2007.11.080
  11. I. Moriguchi, R. Hidaka, H. Yamada, T. Kudo, H. Murakami, and N. Nakashima, "A Mesoporous Nanocomposite of $TiO_2$ and Carbon Nanotubes as a High-Rate Li-Intercalation Electrode Material," Adv. Mater., 18 [1] 69-73 (2006). https://doi.org/10.1002/adma.200501366
  12. N. Bouazza, M. Ouzzine, M. A. Lillo-Ródenas, D. Eder, and A. Linares-Solano, "$TiO_2$ Nanotubes and CNT-$TiO_2$ Hybrid Materials for the Photocatalytic Oxidation of Propene at Low Concentration," Appl. Catal., B, 92 [3-4] 377-83 (2009). https://doi.org/10.1016/j.apcatb.2009.08.017
  13. H. Y. Lee, Y. H. Park, and K. H. Ko, "Photocatalytic Characteristics of $TiO_2$ Films by LPMOCVD," J. Korean Ceram. Soc., 36 [12] 1303-9 (1999).
  14. H. Song, X. Qui, F. Li, W. Zhu, and L. Chen, "Ethanol Electro-Oxidation on Catalysts with $TiO_2$ Coated Carbon Nanotubes as Support," Electrochem. Commun., 9 [6] 1416-21 (2007). https://doi.org/10.1016/j.elecom.2007.01.048
  15. H. An, H. Cui, D. Zhou, D. Tao, B. Li, J. Zhai, and Q. Li, "Synthesis and Performance $Pd/SnO_2-TiO_2$/MWCNT Catalysts for Direct Formic Acid Fuel Cell Application," Electrochim. Acta., 92 [1] 176-82 (2013). https://doi.org/10.1016/j.electacta.2012.12.111
  16. D. J. Guo, X.-P. Qiu, L.-Q. Chen, and W.-T. Zhu, "Multi-Walled Carbon Nanotubes Modified by Sulfated $TiO_2$-A Promising Support for Pt Catalyst in a Direct Ethanol Fuel Cell," Carbon, 47 [7] 1680-85 (2009). https://doi.org/10.1016/j.carbon.2009.02.023
  17. K. Woan, G. Pyrgiotakis, and W. Sigmund, "Photocatalytic Carbon-Nanotube-$TiO_2$ Composites," Adv. Mater., 21 [21] 2233-39 (2006). https://doi.org/10.1002/adma.200802738
  18. O. Frank, M. Kalbac, L. Kavan, M. Zukalova, J. Prochazka, M. Klementova, and L. Dunsh, "Structural Properties and Electrochemical Behavior of CNT-$TiO_2$ Nanocrystal Heterostructures," Phys. Status Solidi C, 244 [11] 4040-45 (2007). https://doi.org/10.1002/pssb.200776158
  19. D. Eder and A. H. Windle, "A Printed and Flexible Field-Effect Transistor Device with Nanoscale Zinc Oxide as Active Semiconductor Material," Adv. Mater., 20 [18] 1787-93 (2008). https://doi.org/10.1002/adma.200702835
  20. Z. Liu, R. Wang, F. Kan, and F. Jiang, "Synthesis and Characterization of $TiO_2$ Nanoparticles," Asian. J. Chem., 26 [3] 655-59 (2014). https://doi.org/10.14233/ajchem.2014.15462
  21. K.-Y. Chun, S. I. Jung, H. Y. Choi, J.-U. Kim, and C. J. Lee, "Thin Multi-Walled Carbon Nanotubes Synthesized by Rapid Thermal Chemical Vapor Deposition and Their Field Emission Properties," Nanosci. Nanotechnol., 9 [3] 2148-54 (2009). https://doi.org/10.1166/jnn.2009.023
  22. D. Eder and A. H. Windle, "Morphology Control of CNT-$TiO_2$ Hybrid Materials and Rutile Nanotubes," J. Mater. Chem., 18 [17] 2036-43 (2008). https://doi.org/10.1039/b800499d
  23. J. H. Kim, X. H. Zhang, J. D. Kim, and S. I. Jung, "Fabrication and Characterization of Highly Crystalline and Stable Phase-Pure Rutile Nanowires," J. Nanosci. Nanotechnol., 12 [8] 6327-32 (2012). https://doi.org/10.1166/jnn.2012.6447
  24. J. H. Kim, X. H. Zhang, J. D. Kim, H. M. Park, S. B. Lee, J. W. Yi, and S. I. Jung, "Synthesis and Characterization of Anatase $TiO_2$ Nanotubes with Controllable Crystal Size by a Simple MWCNT Template Method," J. Solid State Chem., 196 435-40 (2012). https://doi.org/10.1016/j.jssc.2012.06.045
  25. D.-S. Seo, J.-K. Lee, and H. Kim, "Preparation of Nanotube-shaped $TiO_2$ Powder," J. Korean Ceram. Soc., 37 [7] 700-4 (2000).
  26. H. Ogihara, S. Masahiro, Y. Nodasaka, and W. Ueda, "Synthesis, Characterization and Formation Process of Transition Metal Oxide Nanotubes Using Carbon Nanofibers as Templates," J. Solid State Chem., 182 [6] 1587-92 (2009). https://doi.org/10.1016/j.jssc.2009.04.005
  27. N. D. Hoa, N. V. Quy, H. Song, Y. Kang, Y. Cho, and D. Kim, "Tin Oxide Nanotube Structures Synthesized on a Template of Single-Walled Carbon Nanotubes," J. Cryst. Growth., 311 [3] 657-61 (2009). https://doi.org/10.1016/j.jcrysgro.2008.09.076

Cited by

  1. Binder-Free Cathode for Thermal Batteries Fabricated Using FeS 2 Treated Metal Foam vol.7, pp.None, 2018, https://doi.org/10.3389/fchem.2019.00904
  2. Enhanced Electrochemical Properties of Catalyst by Phosphorous Addition for Direct Urea Fuel Cell vol.8, pp.None, 2020, https://doi.org/10.3389/fchem.2020.00777
  3. Influence of temperature on performance of CuV2O6 cathode for high voltage thermal battery vol.58, pp.4, 2021, https://doi.org/10.1007/s43207-021-00129-1
  4. Synthesis of carbon nanotubes on silicalite-1-coated biomorphic materials vol.58, pp.5, 2021, https://doi.org/10.1007/s43207-021-00123-7