DOI QR코드

DOI QR Code

Synthesis of Non-hydrate Iron Oleate for Eco-friendly Production of Monodispersed Iron Oxide Nanoparticles

  • Kim, Do Kyung (Department of Anatomy, College of Medicine, Konyang University) ;
  • Lee, Jae Won (Department of Material Science and Engineering, College of Aviation, Jungwon University)
  • Received : 2018.10.12
  • Accepted : 2018.10.30
  • Published : 2018.11.30

Abstract

In this work, we describe a novel and simple technique to produce non-hydrate surfactant complexes for the formation of highly crystalline fatty acid modified SPIONs by thermolysis of iron oleate (FeOl) complexes in a non-coordinating solvent. FeOl complexes were prepared by direct coordination of iron ions and carboxylic acid; thus, we could control the stoichiometric composition of the precursor by changing the molar ratio of fatty acid and metal ions. The discrete thermal behaviors and chemical coordination of the intermediate non-hydrated FeOl were studied by thermo-analytic techniques including differential scanning calorimetry, thermal gravimetric analysis, and Fourier transform infrared spectroscopy.

Keywords

References

  1. S. Kulkarni, B. Ramaswamy, E. Horton, S. Gangapuram, A. Nacev, D. Depireux, M. Shimoji, and B. Shapiro, "Quantifying the Motion of Magnetic Particles in Excised Tissue: Effect of Particle Properties and Applied Magnetic Field," J. Magn. Magn. Mater., 393 243-52 (2015). https://doi.org/10.1016/j.jmmm.2015.05.069
  2. C. Oka, K. Ushimaru, N. Horiishi, T. Tsuge, and Y. Kitamoto, "Core-Shell Composite Particles Composed of Biodegradable Polymer Particles and Magnetic Iron Oxide Nanoparticles for Targeted Drug Delivery," J. Magn. Magn. Mater., 381 278-84 (2015). https://doi.org/10.1016/j.jmmm.2015.01.005
  3. P.-E. Le Renard, O. Jordan, A. Faes, A. Petri-Fink, H. Hofmann, D. Rüfenacht, F. Bosman, F. Buchegger, and E. Doelker, "The in vivo Performance of Magnetic Particle- Loaded Injectable, in situ Gelling, Carriers for the Delivery of Local Hyperthermia," Biomaterials, 31 [4] 691-705 (2010). https://doi.org/10.1016/j.biomaterials.2009.09.091
  4. S. Meier, G. Pütz, U. Massing, C. E. Hagemeyer, D. von Elverfeldt, M. Meissner, K. Ardipradja, S. Barnert, K. Peter, C. Bode, R. Schubert, and C. von zur Muhlen, "Immuno-Magnetoliposomes Targeting Activated Platelets as a Potentially Human-Compatible MRI Contrast Agent for Targeting Atherothrombosis," Biomaterials, 53 137-48 (2015). https://doi.org/10.1016/j.biomaterials.2015.02.088
  5. N. Sattarahmady, T. Zare, A. R. Mehdizadeh, N. Azarpira, M. Heidari, M. Lotfi, and H. Heli, "Dextrin-Coated Zinc Substituted Cobalt-Ferrite Nanoparticles as an MRI Contrast Agent: In vitro and in vivo Imaging Studies," Colloids Surf., B, 129 15-20 (2015). https://doi.org/10.1016/j.colsurfb.2015.03.021
  6. G. Mehrnaz, "Synthesis of Magnetic Nanoparticles of Cobalt and Nickel Modified Iron Oxides by Thermal Decomposition of Metal-Carbonyl for Biomedical and Biochemical Applications," Clin. Biochem., 44 [13] S213 (2011).
  7. R. S. Sapieszko and E. Matijevic, "Preparation of Well- Defined Colloidal Particles by Thermal Decomposition of Metal Chelates. I. Iron Oxides," J. Colloid Interface Sci., 74 [2] 405-22 (1980). https://doi.org/10.1016/0021-9797(80)90210-6
  8. F. Chen, S. Xie, J. Zhang, and R. Liu, "Synthesis of Spherical $Fe_3O_4$ Magnetic Nanoparticles by Co-Precipitation in Choline Chloride/Urea Deep Eutectic Solvent," Mater. Lett., 112 177-79 (2013). https://doi.org/10.1016/j.matlet.2013.09.022
  9. H. Gu, X. Tang, R. Y. Hong, W. G. Feng, H. D. Xie, D. X. Chen, and D. Badami, "Ubbelohde Viscometer Measurement of Water-Based $Fe_3O_4$ Magnetic Fluid Prepared by Coprecipitation," J. Magn. Magn. Mater., 348 88-92 (2013). https://doi.org/10.1016/j.jmmm.2013.07.033
  10. J. Liang, N. Du, S. Song, and W. Hou, "Magnetic Demulsification of Diluted Crude Oil-in-Water Nanoemulsions Using Oleic Acid-Coated Magnetite Nanoparticles," Colloids Surf., A, 466 197-202 (2015). https://doi.org/10.1016/j.colsurfa.2014.11.050
  11. E. Baeuerlein and D. Schueler, "Biomineralisation: Iron Transport and Magnetite Crystal Formation of Magnetospirillum Gryphiswaldense," J. Inorg. Biochem., 59 [2-3] 107 (1995). https://doi.org/10.1016/0162-0134(95)97217-E
  12. V. de Castro, G. Benito, S. Hurst, C. J. Serna, M. P. Morales, and S. Veintemillas-Verdaguer, "One Step Production of Magnetic Nanoparticle Films by Laser Pyrolysis Inside a Chemical Vapour Deposition Reactor," Thin Solid Films, 519 [22] 7677-82 (2011). https://doi.org/10.1016/j.tsf.2011.05.050
  13. Y.-Q. Ke, C.-C. Hu, X.-D. Jiang, Z.-J. Yang, H.-W. Zhang, H.-M. Ji, L.-Y. Zhou, Y.-Q. Cai, L.-S. Qin, and R.-X. Xu, "In vivo Magnetic Resonance Tracking of Feridex-Labeled Bone Marrow-Derived Neural Stem Cells after Autologous Transplantation in Rhesus Monkey," J. Neurosci. Methods, 179 [1] 45-50 (2009). https://doi.org/10.1016/j.jneumeth.2009.01.007
  14. K. O'Grady and A. Bradbury, "Particle Size Analysis in Ferrofluid," J. Magn. Magn. Mater., 39 91-4 (1983). https://doi.org/10.1016/0304-8853(83)90407-9
  15. N. Shukla, C. Liu, P. M. Jones, and D. Weller, "FTIR Study of Surfactant Bonding to FePt Nanoparticles," J. Magn. Magn. Mater., 266 178-84 (2003). https://doi.org/10.1016/S0304-8853(03)00469-4
  16. L. Zhang, R. He, and H.-C. Gu, "Oleic Acid Coating on the Monodisperse Magnetite Nanoparticles," Appl. Surf. Sci., 253 2611-17 (2006). https://doi.org/10.1016/j.apsusc.2006.05.023
  17. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007). https://doi.org/10.1021/cm062948j
  18. M. M. Mossoba, M. P. Yurawecz, P. Delmonte, and J. K. G. Kramer, "Overview of Infrared Methodologies for trans Fat Determination," J. AOAC. Int., 87 [2] 540-44 (2004).
  19. T. Hyeon, S. S. Lee, J. Park, Y. Chung, and H. B. Na, "Synthesis of Highly Crystallline and Monodisperse Maghemite Nanocrystallites without a Size-Selection Process," J. Am. Chem. Soc., 123 12798-801 (2001). https://doi.org/10.1021/ja016812s
  20. L. M. Bronstein, X. Huang, J. Retrum, A. Schmucker, M. Pink, B. D. Stein, and B. Dragnea, "Influence of Iron Oleate Complex Structure on Iron Oxide Nanoparticle Formation," Chem. Mater., 19 [15] 3624-32 (2007). https://doi.org/10.1021/cm062948j
  21. M. Lanzon and P. A. Garcia-Ruiz, "Effectiveness and Durability Evaluation of Rendering Mortars Made with Metallic Soaps and Powered Silicons," Constr. Build. Mater., 22 [12] 2308-15 (2008). https://doi.org/10.1016/j.conbuildmat.2007.10.001
  22. S. G. Kwon, Y. Piao, J. Park, S. Angappane, Y. Jo, N.-M. Hwang, J.-G. Park, and T. Hyeon, "Kinetics of Monodispersed Iron Oxide Nanocrystals Formation by "Heatingup" Process," J. Am. Chem. Soc., 129 [41] 12571-84 (2007). https://doi.org/10.1021/ja074633q
  23. J. Park, K. An, Y. Hwang, J.-G. Park, H.-J. Noh, J.-Y. Kim, J.-H. Park, N.-M. Hwang, and T. Hyeon, "Ultra-Large-Scale Synthesis of Monodisperse Nanocrystals," Nat. Mater., 3 891-95 (2004). https://doi.org/10.1038/nmat1251
  24. A. Shavel, B. Rodriuez-Gonzalez, J. Pacifico, M. Spavosa, M. Farle, and L. M. Liz-Marzan, "Shape Control in Iron Oxide Nanocrystals Synthesis, Induced by Trioctylammonium Ions," Chem. Mater., 21 1326-32 (2009). https://doi.org/10.1021/cm803201p
  25. H. Zeng, P. M. Rice, S. X. Wang, and S. Sun, "Shape-Controlled Synthesis and Shape-Controlled Texture of $MnFe_2O_4$ Nanoparticles," J. Am. Chem. Soc., 126 11458-59 (2004). https://doi.org/10.1021/ja045911d
  26. Y. Hou, Z. Xu, and S. Sun, "Controlled Synthesis and Chemical Conversions of FeO Nanoparticles," Angew. Chem. Int. Ed., 46 6329-32 (2007). https://doi.org/10.1002/anie.200701694
  27. N. Shukla, C. Liu, P. M. Jones, and D. Weller, "FTIR Study of Surfactant Bonding to FePt Nanoparticles," J. Magn. Magn. Mater., 266 [1-2] 178-84 (2003). https://doi.org/10.1016/S0304-8853(03)00469-4
  28. A. G. Roca, M. P. Morales, K. O'Grady, and C. J. Serna, "Structural and Magnetic Properties of Uniform Magnetite Nanoparticles Prepared by High Temperature Decomposition of Organic Precursors," Nanotechnology, 17 [11] 2783-88 (2006). https://doi.org/10.1088/0957-4484/17/11/010
  29. S. V. Mahajan and J. H. Dikerson, "Synthesis of Monodisperse sub-3 nm $RE_2O_3$ and $Gd_2O_3$: $RE^{3+}$ Nanocrystals," Nanotechnology, 18 [32] 325605-11 (2007). https://doi.org/10.1088/0957-4484/18/32/325605
  30. M. Klokkenburg, J. Hilhost, and B. H. Erne, "Surface Analysis of Magnetite Nanoparticles in Cyclohexane Solutions of Oleic Acid and Oleylamine," Vib. Spectrosc., 43 [1] 243-48 (2007). https://doi.org/10.1016/j.vibspec.2006.09.008
  31. K. R. Rogan, "Adsorption of Oleic Acid and Triolein onto Various Minerals and Surface Treated Minerals," Colloid Polym. Sci., 272 [1] 82-98 (1994). https://doi.org/10.1007/BF00653313
  32. T. Yoshida, Y. Yamamoto, and K. Taga, "Effect of Water-Soluble Alcohol on the Surface Conductance of Lipid Monolayers: Bimodal Action," J. Phys. Chem. B, 107 3196-98 (2003). https://doi.org/10.1021/jp0221845
  33. R. Zbroil, A. Bakandritsos, M. Mashlan, V. Tzitzios, P. Dallas, C. Trapalis, and D. Petridis, "One-Step Solid State Synthesis of Capped Gamma-$Fe_2O_3$ Nanocrystallites," Nanotechnology, 19 [9] 095602-10 (2008). https://doi.org/10.1088/0957-4484/19/9/095602

Cited by

  1. Microwave‐assisted solvothermal synthesis of sodium metal fluoride (Na x MF y ) nanopowders vol.102, pp.11, 2018, https://doi.org/10.1111/jace.16702
  2. Biocompatible Hydrotalcite Nanohybrids for Medical Functions vol.10, pp.2, 2018, https://doi.org/10.3390/min10020172
  3. Pathways to Green Perspectives: Production and Characterization of Polylactide (PLA) Nanocomposites Filled with Superparamagnetic Magnetite Nanoparticles vol.14, pp.18, 2021, https://doi.org/10.3390/ma14185154