DOI QR코드

DOI QR Code

Tsunami research in Korea: Part 1. Numerical analysis and laboratory experiments

우리나라의 지진해일 연구: Part 1. 수치해석과 수리실험

  • Cho, Yong-Sik (Department of Civil and Environmental Engineering, Hanyang University)
  • 조용식 (한양대학교 공과대학 건설환경공학과)
  • Received : 2018.08.28
  • Accepted : 2018.10.30
  • Published : 2018.11.30

Abstract

Tsunamis that have occurred around the Pacific Ocean rim over the past decades have taken a heavy toll on lives of human beings and property. The Eastern Coast of the Korean Peninsula is not safe from sudden tsunami attacks and has sustained tsunami damage in the past. In this review, the past, present, and future of some aspects of tsunami research in Korea have been introduced extensively. Tsunamis in Korea, numerical model simulating tsunami behaviors and laboratory experiments will be discussed. In the compainion review, field surveys for domestics and overseas tsunami events, countermeasures against tsunami attacks, furture research topics and concluding remarks will be described.

지난 수십 년 동안 태평양 연안을 따라 발생했던 지진해일은 막대한 인명 및 재산피해를 초래하였다. 우리나라의 동해안은 갑작스러운 지진해일의 내습으로부터 안전하지 않고, 과거 지진해일에 의해 피해를 입었다. 본 연구의 목적은 우리나라 지진해일의 연구를 과거, 현재, 미래에서의 관점에서 검토하는 것이다. 아울러, 전파모형과 범람모형으로 구성된 수치모형 및 수리실험에 관하여 서술한다. 또한, 이어지는 논문에서는 지진해일 현장조사, 지진해일 피해를 경감시키기 위한 노력과 지진해일 재해정보도 및 앞으로 더 연구해야할 주제 등에 대해서 소개한다.

Keywords

References

  1. Cho, Y.-S. (1995). Numerical Simulations of Tsunami Propagation and Run-up. Ph. D. Thesis, Cornell University, USA.
  2. Cho, Y.-S. (2003). "A note on estimation of the Jacobian elliptic parameter in cnoidal wave theory." Ocean Engineering, Vol. 30, No. 15, pp. 1915-1922. https://doi.org/10.1016/S0029-8018(03)00040-4
  3. Cho, Y.-S., Jin, S.-B., and Lee, H.-J. (2004). "Safety analysis of Ulchin Nuclear Power Plant against the Nihonkai-Chubu Earthquake Tsunami." Nuclear Engineering and Design, Vol. 228, No. 1-3, pp. 393-400. https://doi.org/10.1016/j.nucengdes.2003.06.015
  4. Cho, Y.-S., Sohn, D. H., and Lee, S.-O. (2007). "Practical modified scheme of linear shallow-water equations for distant propagation of tsunamis." Ocean Engineering, Vol. 34, No. 8, pp. 1769-1777.
  5. Cho, Y.-S., and Yoon, S.-B. (1998). "A modified leap-frog scheme for linear shallow-water equations." Coastal Engineering Journal, Vol. 40, No. 2, pp. 191-205. https://doi.org/10.1142/S0578563498000121
  6. Choi, B.-H., Cho, Y.-S., and Yoon, S.-B. (2016). "Tsunami Research in Korea." Natural Hazards, Vol. 84, No. 2, pp. 437-454. https://doi.org/10.1007/s11069-016-2439-1
  7. Choi, J., Kwon, K.-K., and Yoon, S.-B. (2012). "Tsunami inundation simulation of a built-up area using equivalent resistance coefficient." Coastal Engineering Journal, Vol. 54, No. 2, pp. 1250015-1-25. https://doi.org/10.1142/S0578563412500155
  8. Goring, D. G. (1978). Tsunamis-the Propagation of Long Waves onto a Shelf. Ph. D. Thesis, California Institute of Technology, USA.
  9. Ha, T., and Cho, Y.-S. (2015). "Tsunami propagation over varying water depths." Ocean Engineering, Vol. 101, pp. 67-77. https://doi.org/10.1016/j.oceaneng.2015.04.006
  10. Imamura, F., and Goto, C. (1988). "Truncation error in numerical tsunami simulation by finite difference method." Coastal Engineering in Japan, Vol. 31, No. 2, pp. 245-263.
  11. Lander, J. F., and Lockridge, P. A. (1989). United States Tsunamis. U.S. Department of Commerce.
  12. Lee, H.-J., Kim, K.-H., and Jin, S.-B. (1999). New field survey of 1983 East Sea tsunami. Tsunami Warning Beyond 2000 Theory, Practice and Plans. IOC-ICG/ITSU 20.
  13. Liu, P. L-F., Cho, Y.-S., Briggs, M. J., Synolakis, C. E., and Kanoglu, U. (1995). "Run-up of solitary wave on a circular island." Journal of Fluid Mechanics, Vol. 302, pp. 259-285. https://doi.org/10.1017/S0022112095004095
  14. Lu, H., Park, Y.-S., and Cho, Y.-S. (2017). "Modelling of long waves generated by bottom-tilting wave maker." Coastal Engineering, Vol. 122, pp. 1-9.
  15. Roache, P. J. (1976). Computational Fluid Dynamics. Hermosa Publishers.
  16. Sohn, D. H., Ha, T.-M., and Cho, Y.-S. (2009). "Distant tsunami simulation with corrected dispersion effects." Coastal Engineering Journal, Vol. 51, No. 2, pp. 123-141. https://doi.org/10.1142/S0578563409001977
  17. Tsuji, Y. (1986). "Comparison of observed and numerically calculated heights of the 1983 Japan Sea tsunami." Science of Tsunami Hazards, Vol. 4, No. 2, pp. 91-110.
  18. Tsuji, Y. (2010). Private Communincation.
  19. Tsuji, Y., and Konishi, T. (1985). Tsunamis in the Japan Sea with numerical calculation. Report 35 (in Japanese), Natl Res Center for Disaster Prev, Research.
  20. Yoon, S.-B. (2002). "Propagation of tsunamis over slowly varying topography." Journal of Geophysical Research, Vol. 107, No. 10, pp. 4(1)-4(11).
  21. Yoon, S.-B., Lim, C.-H., and Choi, J. (2007). "Dispersion-correction finite difference model for simulation of transoceanic tsunamis." Terrestrial Atmospheric and Oceanic Sciences, Vol. 18, No. 1, pp. 31-53.
  22. Yoon, S.-B., and Liu, P. L-F. (1992). Numerical simulation of a distant small-scale tsunami. Recent Adv in Marine Sci and Tech, PACON92, Pacific Congr Marine Sci and Tech, Kona, Hawaii.