지르코니아 강화 리튬 실리케이트 세라믹의 특성과 임상적용

Material properties and clinical application of zirconia-reinforced lithium silicate ceramics

  • 김종은 (연세대학교 치과대학 치과보철과학교실) ;
  • 김지환 (연세대학교 치과대학 치과보철과학교실) ;
  • 심준성 (연세대학교 치과대학 치과보철과학교실) ;
  • 박영범 (연세대학교 치과대학 치과보철과학교실)
  • Kim, Jong-Eun (Department of Prosthodontics, Yonsei University College of Dentisty) ;
  • Kim, Jee-Hwan (Department of Prosthodontics, Yonsei University College of Dentisty) ;
  • Shim, June-Sung (Department of Prosthodontics, Yonsei University College of Dentisty) ;
  • Park, Young-Bum (Department of Prosthodontics, Yonsei University College of Dentisty)
  • 발행 : 2018.03.01

초록

지르코니아 강화 리튬 실리케이트 세라믹 재료는, 현재 널리 사용되고 있는 e.max(리튬디실리케이트 세라믹) 재료에 비하여 더 개선된 강도를 지니고 있다. 단일 크라운의 수복에 사용될 수 있으며, 1.5mm 의 두께를 확보하는 것이 예지성 있는 치료를 위해 매우 중요하다. Celtra Duo의 경우 열처리를 수행하는 것이 강도나 마모 저항성 측면에서 도움이 될 것이다. 접착을 위해서는 불산의 처리가 도움이 되며, 너무 짧은 시간의 불산은 접착 강도의 개선에 도움을 주지 못할 수 있으므로 충분한 시간의 불산 처리가 필요하다. 지르코니아 강화 리튬 실리케이트 세라믹 재료는 실험실 연구가 지속적으로 수행되고 출판되고 있지만, 아직 신뢰할만한 임상연구는 매우 부족한 실정이다. 추가적인 임상연구를 통해 과학적인 근거를 마련하는 것이 매우 중요한 부분이 될 것이다.

The zirconia-reinforced lithium silicate ceramic material is a material in which lithium silicate glass contains about 10% by weight of zirconia oxide (zirconia oxide). This material has both the advantages of glass ceramics and zirconia, and it is attracting attention as a CADCAM material for single tooth restoration. ZLS materials have improved strength compared to widely used e.max (lithium disilicate ceramic) materials. It can be used for single crown restoration and ensuring a thickness of 1.5 mm is very important for reliable treatment. In the case of Celtra Duo, heat treatment may be helpful in terms of strength and abrasion resistance. Hydrofluoric acid treatment is helpful for bonding and hydrofluoric acid for a short time may not help to improve the bonding strength. Although zirconia-reinforced lithium silicate ceramic materials have been continuously conducted and published in the laboratory, reliable clinical studies are still lacking. Additional clinical studies will be a very important part of establishing a scientific basis.

키워드

참고문헌

  1. Coldea A, Swain MV, Thiel N. Mechanical properties of polymer-infiltrated-ceramic-network materials. Dent Mater 2013;29(4):419-26. https://doi.org/10.1016/j.dental.2013.01.002
  2. Salazar Marocho SM, Studart AR, Bottino MA, Bona AD. Mechanical strength and subcritical crack growth under wet cyclic loading of glass-infiltrated dental ceramics. Dent Mater 2010;26(5):483-90. https://doi.org/10.1016/j.dental.2010.01.007
  3. Thompson JY, Stoner BR, Piascik JR, Smith R. Adhesion/cementation to zirconia and other nonsilicate ceramics: where are we now? Dent Mater 2011;27(1):71-82. https://doi.org/10.1016/j.dental.2010.10.022
  4. Ferrari M, Vichi A, Zarone F. Zirconia abutments and restorations: from laboratory to clinical investigations. Dent Mater 2015;31(3):e63-76. https://doi.org/10.1016/j.dental.2014.11.015
  5. Culp L, McLaren EA. Lithium disilicate: the restorative material of multiple options. Compend Contin Educ Dent 2010;31(9):716-20, 22, 24-5.
  6. Kelly JR, Benetti P. Ceramic materials in dentistry: historical evolution and current practice. Aust Dent J 2011;56 Suppl 1:84-96. https://doi.org/10.1111/j.1834-7819.2010.01299.x
  7. Fasbinder DJ. Materials for chairside CAD/CAM restorations. Compend Contin Educ Dent 2010;31(9):702-4, 06, 08-9.
  8. Giordano R. Materials for chairside CAD/CAM-produced restorations. J Am Dent Assoc 2006;137 Suppl:14S-21S.
  9. Fasbinder DJ, Dennison JB, Heys D, Neiva G. A clinical evaluation of chairside lithium disilicate CAD/CAM crowns: a two-year report. J Am Dent Assoc 2010;141 Suppl 2:10S-4S. https://doi.org/10.14219/jada.archive.2010.0355
  10. Wiedhahn K. From blue to white: new high-strength material for Cerec--IPS e.max CAD LT. Int J Comput Dent 2007;10(1):79-91.
  11. Pieger S, Salman A, Bidra AS. Clinical outcomes of lithium disilicate single crowns and partial fixed dental prostheses: a systematic review. J Prosthet Dent 2014;112(1):22-30. https://doi.org/10.1016/j.prosdent.2014.01.005
  12. Elsaka SE, Elnaghy AM. Mechanical properties of zirconia reinforced lithium silicate glass-ceramic. Dent Mater 2016;32(7):908-14. https://doi.org/10.1016/j.dental.2016.03.013
  13. Belli R, Wendler M, de Ligny D, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dental Materials 2017;33(1):84-98. https://doi.org/10.1016/j.dental.2016.10.009
  14. Belli R, Wendler M, de Ligny D, et al. Chairside CAD/CAM materials. Part 1: Measurement of elastic constants and microstructural characterization. Dent Mater 2017;33(1):84-98. https://doi.org/10.1016/j.dental.2016.10.009
  15. Wendler M, Belli R, Petschelt A, et al. Chairside CAD/CAM materials. Part 2: Flexural strength testing. Dent Mater 2017;33(1):99-109. https://doi.org/10.1016/j.dental.2016.10.008
  16. D'Arcangelo C, Vanini L, Rondoni GD, De Angelis F. Wear properties of dental ceramics and porcelains compared with human enamel. J Prosthet Dent 2016;115(3):350-5. https://doi.org/10.1016/j.prosdent.2015.09.010
  17. Lawson NC, Bansal R, Burgess JO. Wear, strength, modulus and hardness of CAD/CAM restorative materials. Dent Mater 2016;32(11):e275-e83. https://doi.org/10.1016/j.dental.2016.08.222
  18. Denry IL, Holloway JA, Tarr LA. Effect of heat treatment on microcrack healing behavior of a machinable dental ceramic. J Biomed Mater Res 1999;48(6):791-6. https://doi.org/10.1002/(SICI)1097-4636(1999)48:6<791::AID-JBM5>3.0.CO;2-P
  19. Hung CY, Lai YL, Hsieh YL, Chi LY, Lee SY. Effects of simulated clinical grinding and subsequent heat treatment on microcrack healing of a lithium disilicate ceramic. Int J Prosthodont 2008;21(6):496-8.
  20. Zimmermann M, Valcanaia A, Neiva G, Mehl A, Fasbinder D. Digital evaluation of the fit of zirconia-reinforced lithium silicate crowns with a new three-dimensional approach. Quintessence Int 2017:9-15.
  21. Zimmermann M, Egli G, Zaruba M, Mehl A. Influence of material thickness on fractural strength of CAD/CAM fabricated ceramic crowns. Dent Mater J 2017;36(6):778-83. https://doi.org/10.4012/dmj.2016-296
  22. Subasl MG, Alp G, Johnston WM, Yilmaz B. Effect of thickness on optical properties of monolithic CAD-CAM ceramics. Journal of Dentistry.
  23. Ilie N, Hickel R. Correlation between ceramics translucency and polymerization efficiency through ceramics. Dent Mater 2008;24(7):908-14. https://doi.org/10.1016/j.dental.2007.11.006
  24. Lawson NC, Janyavula S, Syklawer S, McLaren EA, Burgess JO. Wear of enamel opposing zirconia and lithium disilicate after adjustment, polishing and glazing. J Dent 2014;42(12):1586-91. https://doi.org/10.1016/j.jdent.2014.09.008
  25. Tsitrou EA, Northeast SE, van Noort R. Brittleness index of machinable dental materials and its relation to the marginal chipping factor. J Dent 2007;35(12):897-902. https://doi.org/10.1016/j.jdent.2007.07.002
  26. Fathy SM, Swain MV. In-vitro wear of natural tooth surface opposed with zirconia reinforced lithium silicate glass ceramic after accelerated ageing. Dent Mater 2018.
  27. Bindl A, Luthy H, Mormann WH. Strength and fracture pattern of monolithic CAD/CAM-generated posterior crowns. Dent Mater 2006;22(1):29-36. https://doi.org/10.1016/j.dental.2005.02.007
  28. Al-Wahadni AM, Hussey DL, Grey N, Hatamleh MM. Fracture resistance of aluminium oxide and lithium disilicate-based crowns using different luting cements: an in vitro study. J Contemp Dent Pract 2009;10(2):51-8.
  29. Gehrt M, Wolfart S, Rafai N, Reich S, Edelhoff D. Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 2013;17(1):275-84. https://doi.org/10.1007/s00784-012-0700-x
  30. Toman M, Toksavul S. Clinical evaluation of 121 lithium disilicate all-ceramic crowns up to 9 years. Quintessence Int 2015;46(3):189-97.
  31. Ramakrishnaiah R, Alkheraif AA, Divakar DD, Matinlinna JP, Vallittu PK. The Effect of Hydrofluoric Acid Etching Duration on the Surface Micromorphology, Roughness, and Wettability of Dental Ceramics. Int J Mol Sci 2016;17(6).
  32. Sato TP, Anami LC, Melo RM, Valandro LF, Bottino MA. Effects of Surface Treatments on the Bond Strength Between Resin Cement and a New Zirconia-reinforced Lithium Silicate Ceramic. Oper Dent 2016;41(3):284-92. https://doi.org/10.2341/14-357-L
  33. Monteiro JB, Oliani MG, Guilardi LF, et al. Fatigue failure load of zirconia-reinforced lithium silicate glass ceramic cemented to a dentin analogue: Effect of etching time and hydrofluoric acid concentration. J Mech Behav Biomed Mater 2018;77:375-82. https://doi.org/10.1016/j.jmbbm.2017.09.028
  34. Sattabanasuk V, Charnchairerk P, Punsukumtana L, Burrow MF. Effects of mechanical and chemical surface treatments on the resin-glass ceramic adhesion properties. J Investig Clin Dent 2017;8(3).
  35. Tsujimoto A, Barkmeier WW, Takamizawa T, et al. Interfacial Characteristics and Bond Durability of Universal Adhesive to Various Substrates. Oper Dent 2017;42(2):E59-E70. https://doi.org/10.2341/15-353-L
  36. Vichi A, Fonzar RF, Goracci C, Carrabba M, Ferrari M. Effect of Finishing and Polishing on Roughness and Gloss of Lithium Disilicate and Lithium Silicate Zirconia Reinforced Glass Ceramic for CAD/CAM Systems. Oper Dent 2018;43(1):90-100. https://doi.org/10.2341/16-381-L
  37. Heintze SD, Forjanic M, Rousson V. Surface roughness and gloss of dental materials as a function of force and polishing time in vitro. Dent Mater 2006;22(2):146-65. https://doi.org/10.1016/j.dental.2005.04.013
  38. Al-Wahadni AM, Martin DM. An in vitro investigation into the wear effects of glazed, unglazed and refinished dental porcelain on an opposing material. J Oral Rehabil 1999;26(6):538-46. https://doi.org/10.1046/j.1365-2842.1999.00394.x
  39. Kou W, Molin M, Sjogren G. Surface roughness of five different dental ceramic core materials after grinding and polishing. J Oral Rehabil 2006;33(2):117-24. https://doi.org/10.1111/j.1365-2842.2006.01546.x