References
- H. Kang, Projection spectral analysis, Int. J. Control, Autom. Syst. 13 (2015), no. 6, 1530-1537. https://doi.org/10.1007/s12555-014-0286-y
- A. W. Naylor and G. R. Sell, Linear operator theory in engineering and science - Applied mathematical sciences, vol. 40 Springer-Verlag, Inc., New York, 1982.
- D. Hebb, Organization of behavior, Science Edition, Inc., New York, 1961.
- J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl Acad. Sci. USA, Biophys. 79 (1982), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554
- B. Kosko, Bidirectional associative memories, IEEE Trans. System, Man, Cybern. 18 (1988), no. 1, 49-60. https://doi.org/10.1109/21.87054
- M. Turk and A. Pentland, Eigenfaces for recognition, J. Cogn. Neurosci. 3 (1991), no. 1, 71-86. https://doi.org/10.1162/jocn.1991.3.1.71
- A. Hyvarinen, J. Karhunen, and E. Oja, Independent component analysis, John Wiley and Sons, Inc., New York, 2001.
- J. V. Stone, Independent component analysis - A tutorial introduction, The MIT Press, Cambridge, MA, 2004.
- A. Hyvarinen, Fast and robust fixed-point algorithms for independent component analysis, IEEE Trans. Neural Netw. 10 (1999), no. 3, 626-634. https://doi.org/10.1109/72.761722
- H. Kang, Multilayered associative neural networks (m. a. n. n.): Storage capacity vs. perfect recall, IEEE Trans. Neural Networks 5 (1994), no. 5, 812-822. https://doi.org/10.1109/72.317732
- G. E. Hinton, S. Osindero, and Y. W. Teh, A fast learning algorithm for deep belief nets, Neural Comput. 18 (2006), no. 7 1527-1554. https://doi.org/10.1162/neco.2006.18.7.1527
- Y. Bengio, Learning deep architecture for AI, Found. Trends Mach. Learn. 2 (2009), no. 1, 1-127. https://doi.org/10.1561/2200000006
- Y. LeCunn, et al., Gradient-based learning applied to document recognition, Proc. IEEE 86 (1998), 1-46.
- Y. LeCunn, K. Kavukcuoglu, and C. Farabet, Convolutional networks and applications in vision, Proc. IEEE Int. Symp. Circuits Syst., Paris, France, 2010, pp. 253-256.
- H. Kang, Associative cubes in unsupervised learning for robust gray-scale image recognition, Proc. 3rd Int. Symposium on Neural Networks, Advances in Neural Networks - ISNN 2006, Springer-Verlag, Berlin Heidelberg (J. Wang et al., ed.), vol. LNCS 3972, (2006), pp. 581-588.
- C.-T. Chen, Linear system theory and design, Oxford University Press, Inc., New York, 1999.
- S. Shimizu, et al., A linear non-Gaussian acyclic model for causal discovery, J. Mach. Learn. Res. 7 (2006), 2003-2020.
- V. Calhoun, et al., A method for making group inferences from functional MRI data using independent component analysis, Hum. Brain Mapp. 14 (2001), 140-151. https://doi.org/10.1002/hbm.1048
- M. Gutmann and A. Hyvarinen, Noise-constrastive estimation: A new estimation principle for unnormalized statistical models, Proc. Int. Conf. Artif. Intell. Statistics Sardinia, Italy, May 13-15, 2010, pp. 297-304.