DOI QR코드

DOI QR Code

Fuzzy sliding-mode control of a human arm in the sagittal plane with optimal trajectory

  • 투고 : 2018.01.30
  • 심사 : 2018.05.27
  • 발행 : 2018.10.01

초록

Patients with spinal cord injuries cannot move their limbs using their intact muscles. A suitable controller can be used to move their arms by employing the functional electrical stimulation method. In this article, a fuzzy exponential sliding-mode controller is designed to move a musculoskeletal human arm model to track an optimal trajectory in the sagittal plane. This optimal arm trajectory is obtained by developing a policy for the central nervous system. In order to specify the optimal trajectory between two points, two dynamic and static optimal criteria are applied simultaneously. The first dynamic objective function is defined to minimize the joint torques, and the second static optimization is offered to minimize the muscle forces at each moment. In addition, fuzzy logic is used to tune the sliding-surface parameter to enable an appropriate tracking performance. Simulation results are evaluated and compared with experimental data for upward and downward movements of the human arm.

키워드

참고문헌

  1. W. Li, Optimal control for biological movement systems, Control 85 (2006), 156.
  2. C. T. Freeman et al., A model of the upper extremity using FES for stroke rehabilitation, J. Biomech. Eng. 131 (2009), no. 3, 31011:1-31011:12.
  3. B. I. Prilutsky, Coordination of two- and one-joint muscles: Functional consequences and implications for motor control, Motor Contr. 4 (2000), no. 1, 1-44. https://doi.org/10.1123/mcj.4.1.1
  4. M. Praagman et al., The relationship between two different mechanical cost functions and muscle oxygen consumption, J. Biomech. 39 (2006), no. 4, 758-765. https://doi.org/10.1016/j.jbiomech.2004.11.034
  5. D. Tsirakos, V. Baltzopoulos, and R. Bartlett, Inverse optimization: Functional and physiological considerations related to the force-sharing problem, Crit. Rev. Biomed. Eng. 25 (1997), no. 4-5, 371-407. https://doi.org/10.1615/CritRevBiomedEng.v25.i4-5.20
  6. N. Hogan, An organizing principle for a class of voluntary movements, J. Neurosci. 4 (1984), no. 11, 2745-2754. https://doi.org/10.1523/JNEUROSCI.04-11-02745.1984
  7. T. Flash and N. Hogan, The coordination of arm movements: An experimentally confirmed mathematical model, J. Neurosci. 5 (1985), no. 7, 1688-1703. https://doi.org/10.1523/JNEUROSCI.05-07-01688.1985
  8. Y. Uno, M. Kawato, and R. Suzuki, Formation and control of optimal trajectory in human multijoint arm movement, Biol. Cybernetics 61 (1989), no. 2, 89-101. https://doi.org/10.1007/BF00204593
  9. E. Nakano et al., Quantitative examinations of internal representations for arm trajectory planning: Minimum commanded torque change model, J. Neurophysiol. 81 (1999), no. 5, 2140-2155. https://doi.org/10.1152/jn.1999.81.5.2140
  10. S. Ben-Itzhak and A. Karniel, Minimum acceleration criterion with constraints implies bang-bang control as an underlying principle for optimal trajectories of arm reaching movements, Neural Comput. 20 (2008), no. 3, 779-812. https://doi.org/10.1162/neco.2007.12-05-077
  11. R. M. Alexander, A minimum energy cost hypothesis for human arm trajectories, Biol. Cybern. 76 (1997), no. 2, 97-105. https://doi.org/10.1007/s004220050324
  12. Y. Ueyama and E. Miyashita, Optimal feedback control for predicting dynamic stiffness during arm movement, IEEE Trans. Ind. Electron. 61 (2014), no. 2, 1044-1052. https://doi.org/10.1109/TIE.2013.2273473
  13. M. Sharif Shourijeh and J. McPhee, Optimal control and forward dynamics of human periodic motions using Fourier series for muscle excitation patterns, J. Comput. Nonlin. Dyn. 9 (2013), no. 2, 21005:1-21005:7.
  14. W. Li and E. Todorov, Iterative linearization methods for approximately optimal control and estimation of non-linear stochastic system, Int. J. Contr. 80 (2007), no. 9, 1439-1453. https://doi.org/10.1080/00207170701364913
  15. S. D. Farahani, Prediction of closed-chain human arm dynamics in a crank-rotation task, J. Biomechanics 49 (2016), no. 13, 2684-2693. https://doi.org/10.1016/j.jbiomech.2016.05.034
  16. M. Zadravec and Z. Matjacic, Planar arm movement trajectory formation: An optimization based simulation study, Biocybern. Biomed. Eng. 33 (2013), no. 2, 106-117. https://doi.org/10.1016/j.bbe.2013.03.006
  17. M. Sharifi, S. H. Pourtakdoust, and M. Parnianpour, Optimal control of human-like musculoskeletal arm: Prediction of trajectory and muscle forces, Opt. Contr. Applicat. Methods 38 (2017), no. 2, 167-183. https://doi.org/10.1002/oca.2249
  18. M. Sharifi, H. Salarieh, and S. Behzadipour, Nonlinear optimal control of planar musculoskeletal arm model with minimum muscles stress criterion, J. Comput. Nonlin. Dyn. 12 (2016), no. 1, 11014:1-11014:10.
  19. K. Tahara and H. Kino, Iterative learning control for a redundant musculoskeletal arm: Acquisition of adequate internal force, IEEE/RSJ Int. Conf. Intell. Robots Syst., Taipei, Taiwan, October 18-22, 2010, pp. 234-240.
  20. M. H. E. Balaghi et al., Adaptive optimal multi-critic based neuro-fuzzy control of MIMO human musculoskeletal arm model, Neurocomput. 173 (2016), no. 3, 1529-1537. https://doi.org/10.1016/j.neucom.2015.09.026
  21. Y. W. Liao et al., Multi-muscle FES control of the human arm for interaction tasks - Stabilizing with muscle co-contraction and postural adjustment: A simulation study, IEEE Int. Conf. Intell. Robots Syst., Chicago, IL, USA, September 14-18, 2014, pp. 2134-2139.
  22. J. H. Lilly and P. M. Quesada, A two-input sliding-mode controller for a planar arm actuated by four pneumatic muscle groups, IEEE Trans. Neural Syst. Rehabil. Eng. 12 (2004), no. 3, 349-359. https://doi.org/10.1109/TNSRE.2004.831490
  23. C. J. Fallaha et al., Sliding-mode robot control with exponential reaching law, IEEE Trans, Ind, Electron. 58 (2011), no. 2, 600-610. https://doi.org/10.1109/TIE.2010.2045995
  24. Z. J. Shahbazzadeh, F. F. Ardakani, and R. Vatankhah, Exponential sliding mode controller for a nonlinear musculoskeletal human arm model, Int. Conf. Modeling, Simulation Appl. Opt., Sharjah, United Arab Emirates, April 4-6, 2017, pp. 1-5.
  25. H. K. Khalil and J. Grizzle, Nonlinear Systems, Prentice Hall, Upper Saddle River, NJ, 2002.
  26. H. Aschemann and D. Schindele, Sliding mode control for a high-speed linear axis driven by pneumatic muscles, Lect. Notes Contr. Inform. Sci. 407 (2010), 31-40.
  27. K. Lochan, S. Suklabaidya, and B. K. Roy, Sliding mode and adaptive sliding mode control approaches of two link flexible manipulator, Proc. Conf. Adv. Robotics., Goa, India, July 2-4, 2015, pp. 58:1-58:6.
  28. H. Q. Thinh Ngo, J.-H. Shin, and W.-H. Kim, Fuzzy sliding mode control for a robot manipulator, Artif. Life Robot. 13 (2008), no. 1, 124-128. https://doi.org/10.1007/s10015-008-0531-7
  29. S. Moussaoui and A. Boulkroune, Fuzzy approximation-based adaptive sliding-mode control scheme for underactuated systems, Int. Conf. Contr., Eng. Inform. Technol., Tiemcen, Algeria, May 25-27, 2015, pp. 1-6.
  30. K. R. S. Holzbaur et al., Upper limb muscle volumes in adult subjects, J. Biomech. 40 (2007), no. 4, 742-749. https://doi.org/10.1016/j.jbiomech.2006.11.011
  31. W. M. Murray, T. S. Buchanan, and S. L. Delp, The isometric functional capacity of muscles that cross the elbow, J. Biomech. 33 (2000), no. 8, 943-952. https://doi.org/10.1016/S0021-9290(00)00051-8
  32. H. E. J. Veeger et al., Parameters for modeling the upper extremity, J. Biomech. 30 (1997), no. 6, 647-652. https://doi.org/10.1016/S0021-9290(97)00011-0
  33. P. Pigeon, L. Yahia, and A. G. Feldman, Moment arms and lengths of human upper limb muscles as functions of joint angles, J. Biomech. 29 (1996), no. 10, 1365-1370. https://doi.org/10.1016/0021-9290(96)00031-0
  34. M. H. Rahman et al., Control of an exoskeleton robot arm with sliding mode exponential reaching law, Int. J. Contr. Autom. Syst. 11 (2013), no. 11, 92-104. https://doi.org/10.1007/s12555-011-0135-1
  35. D. E. Kirk, Optimal control theory: An introduction, IEEE Trans. Autom. Contr. 17 (2004), 452.
  36. C. G. Atkeson and J. M. Hollerbach, Kinematic features of unrestrained vertical arm movements, J. Neurosci. 5 (1985), no. 9, 2318-2330. https://doi.org/10.1523/JNEUROSCI.05-09-02318.1985