DOI QR코드

DOI QR Code

Bioinformatic Analysis of Envelope Protein Domains of Zika Virus and Dengue Virus

지카 바이러스 및 뎅기 바이러스의 외피 단백질을 구성하는 도메인의 생물정보학적 분석

  • Received : 2019.10.23
  • Accepted : 2019.11.04
  • Published : 2019.11.28

Abstract

In recent years, large scale damages from arbovirus infections by mosquitoes have been reported worldwide due to factors such as change in global climate, increased overseas travel, and increased logistics movement between countries. Among them, Zika virus and dengue virus belonging to genus Flavivirus are representative. In this study, we performed in-depth analyses of the envelope (E) protein that perform essential functions for host infection of Zika virus and dengue virus based on bioinformatics databases. The domain analysis of E protein was performed to determine the type, location, and function, and homology analysis for each domain. From these results, EDIII showing low homology was identified. The homology and immunogenicity of each peptide constituting EDIII were analyzed and three-dimensional structures were modeled. Furthermore, we discussed their biological meaning and how they could be used.

최근 지구 기후의 변화, 해외 여행객의 증가 및 국가 간 물류 이동의 증가 등과 같은 요인으로 인해 모기와 같은 절지동물이 매개하는 아보바이러스(arthropod-borne virus, arbovirus) 감염으로 인한 대규모의 피해가 전 세계적으로 끊임없이 발생하고 있다. 그 중에서도 플라비바이러스 속에 해당하는 지카 바이러스와 뎅기바이러스에 의한 피해가 대표적이다. 본 연구에서는 다양한 생물정보학 데이터베이스를 바탕으로 지카 바이러스 및 뎅기 바이러스가 숙주 감염에 필수적인 기능을 수행하는 외피 단백질에 대한 심층적인 분석을 수행했다. 외피 단백질을 구성하는 도메인들에 대한 분석을 통해 도메인의 종류, 위치 및 기능을 파악했으며 각 도메인별 상동성을 분석했다. 이로부터 낮은 상동성을 보이는 도메인인 EDIII를 도출하였으며, EDIII를 구성하는 펩타이드에 대한 상동성 및 면역원성 분석과 3차원 구조 모델링을 수행했다. 더 나아가 이들이 갖는 생물학적 의미와 활용 방안에 대해 논의했다.

Keywords

References

  1. M. R. Holbrook, "Historical Perspectives on Flavivirus Research," Viruses, Vol.9, No.5, p.E97, 2017. https://doi.org/10.3390/v9050097
  2. N. M. Byers, A. C. Fleshman, R. Perera, and C. R. Molins, "Metabolomic Insights into Human Arboviral Infections: Dengue, Chikungunya, and Zika Viruses," Viruses, Vol.11, No.3, p.E225, 2019.
  3. J. Liu-Helmersson, Å. Brännstrom, M. O. Sewe, J. C. Semenza, and J. Rocklov, "Estimating Past, Present, and Future Trends in the Global Distribution and Abundance of the Arbovirus Vector Aedes aegypti Under Climate Change Scenarios," Front. Public Health, Vol.7, p.148, 2019. https://doi.org/10.3389/fpubh.2019.00148
  4. P. S. Pandit, M. M. Doyle, K. M. Smart, C. C. W. Young, G. W. Drape, and C. K. Johnson, "Predicting Wildlife Reservoirs And Global Vulnerability To Zoonotic Flaviviruses," Nat. Commun, Vol.9, No.1, p.5425, 2018. https://doi.org/10.1038/s41467-018-07896-2
  5. S. Hasan, S. Saeed, R. Panigrahi, and P. Choudhary, "Zika Virus: A Global Public Health Menace: A Comprehensive Update," J. Int. Soc. Prev. Community Dent., Vol.9, No.4, pp.316-327, 2019. https://doi.org/10.4103/jispcd.JISPCD_433_18
  6. J. P. Messina, O. J. Brady, T. W. Scott, C. Zou, D. M. Pigott, K. A. Duda, S. Bhatt, L. Katzelnick, R. E. Howes, K. E. Battle, C. P. Simmons, and S. I. Hay, "Global Spread of Dengue Virus Types: Mapping the 70 Year History," Trends Microbiol., Vol.22, No.3, pp.138-146, 2014. https://doi.org/10.1016/j.tim.2013.12.011
  7. S. B. Halstead and L. F. Dans, "Dengue Infection And Advances in Dengue Vaccines for Children," Lancet Child Adolesc. Health, Vol.3, No.10, pp.734-741, 2019. https://doi.org/10.1016/S2352-4642(19)30205-6
  8. M. E. Sobhia, K. Ghosh, A. Singh, K. Sul, M. Singh, R. Kumar, Sandeep, S. Merugu, and S. Donempudi, "A Multi-Perspective Review on Dengue Research," Vol.20, No.15, pp.1550-1562, 2019. https://doi.org/10.2174/1389450120666190724145937
  9. Y. Hu and L. Sun, "Systematic Analysis of Structure Similarity between Zika Virus and Other Flaviviruses," ACS Infect. Dis., Vol.5, No.7, pp.1070-1080, 2019. https://doi.org/10.1021/acsinfecdis.9b00047
  10. 최재원, 조병관, 김민정, 박수지, 김학용, "아시아 국가 내에서 감염빈도가 높은 플라비바이러스의 구별: 생물정보학적 접근을 통한 항원결정기 예측," 한국콘텐츠학회논문지, 제18권, 제4호, pp.99-113, 2018. https://doi.org/10.5392/JKCA.2018.18.04.099
  11. X. Zhang, R. Jia, H. Shen, M. Wang, Z. Yin, and A. Cheng, "Structures and Functions of the Envelope Glycoprotein in Flavivirus Infections," Viruses, Vol.9, No.11, p.E338, 2017.
  12. C. Yang, R. Gong, and N. de Val, "Development of Neutralizing Antibodies against Zika Virus Based on Its Envelope Protein Structure," Virol. Sin., Vol.34, No.2, pp.168-174, 2019. https://doi.org/10.1007/s12250-019-00093-5
  13. A. Urakami, M. M. Ngwe Tun, M. L. Moi, A. Sakurai, M. Ishikawa, S. Kuno, R. Ueno, K. Morita, and W. Akahata, "An Envelope-Modified Tetravalent Dengue Virus-Like-Particle Vaccine Has Implications for Flavivirus Vaccine Design," J. Virol., Vol.91, No.23, pp.e01181-17, 2017
  14. E. N. Gallichotte, E. F. Young, T. J. Baric, B. L. Yount, S. W. Metz, M. C. Begley, A. M. de Silva, and R. S. Baric, "Role of Zika Virus Envelope Protein Domain III as a Target of Human Neutralizing Antibodies," MBio, Vol.10, No.5, pp.e01485-19, 2019.
  15. S. Akhras, M. L. Herrlein, F. Elgner, T. Holzhauser, and E. Hildt, "ZIKV Envelope Domain-Specific Antibodies: Production, Purification and Characterization," Viruses, Vol.11, No.8, p.E748, 2019.
  16. P. Scaturro, A. L. Kastner, and A. Pichlmair, "Chasing Intracellular Zika Virus Using Proteomics," Viruses, Vol.11, No.9, p.E878, 2019.
  17. G. Bergamaschi, E. M. A. Fassi, A. Romanato, I. D'Annessa, M. T. Odinolfi, D. Brambilla, F. Damin, M. Chiari, A. Gori, G. Colombo, and M. Cretich, "Computational Analysis of Dengue Virus Envelope Protein (E) Reveals an Epitope with Flavivirus Immunodiagnostic Potential in Peptide Microarrays," Int. J. Mol. Sci., Vol.20, No.8, p.E1921, 2019.
  18. V. Fonseca, P. J. K. Libin, K. Theys, N. R. Faria, M. R. T. Nunes, M. I. Restovic, M. Freire, M. Giovanetti, L. Cuypers, A. Nowe, A. Abecasis, K. Deforche, G. A. Santiago, I. C. Siqueira, E. J. San, K. C. B. Machado, V. Azevedo, A. M. B. Filippis, R. V. D. Cunha, O. G. Pybus, A. M. Vandamme, L. C. J. Alcantara, and T. de Oliveira, "A Computational Method for The Identification of Dengue, Zika and Chikungunya Virus Species And Genotypes," PLoS Negl. Trop. Dis., Vol.13, No.5, p.e0007231, 2019. https://doi.org/10.1371/journal.pntd.0007231
  19. A. S. Rathore, A. Sarker, and R. D. Gupta, "Designing Antibody against Highly Conserved Region of Dengue Envelope Protein by In Silico Screening of scFv Mutant Library," PLoS One, Vol.14, No.1, pp.e0209576, 2019. https://doi.org/10.1371/journal.pone.0209576
  20. S. K. Chellasamy and S. Devarajan, "Identification of Potential Lead Molecules for Zika Envelope Protein from In Silico Perspective," Avicenna J. Med. Biotechnol., Vol.11, No.1, pp.94-103, 2019.
  21. S. Priya, N. S. Kumar, and S. Hemalatha, "Antiviral Phytocompounds Target Envelop Protein to Control Zika Virus," Comput. Biol. Chem., Vol.77, pp.402-412, 2018. https://doi.org/10.1016/j.compbiolchem.2018.08.008