DOI QR코드

DOI QR Code

Control of Mechanical Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure

  • 투고 : 2019.06.17
  • 심사 : 2019.07.23
  • 발행 : 2019.12.31

초록

Polyurethane elastomers (PUEs) were synthesized using trans-1,4-bis(isocyanatomethyl) cyclohexane (1,4-H6XDI), poly(oxytetramethylene) glycol, 1,4-butanediol (BD), and 1,1,1-trimethylol propane (TMP). To control the molecular aggregation state and mechanical properties of these PUEs, hard segment contents of 20 and 30 wt% and BD/TMP ratios of 10/0 and 8/2 were chosen. Differential scanning calorimetry and small-angle X-ray scattering measurements revealed that the degree of microphase separation increased with an increase in both hard segment content and BD ratio. The Young's modulus and strain at break of the 1,4-H6XDI-based PUE were 6-20 MPa and 5-15, respectively. Incorporation of 20% TMP as a cross-linking agent into BD increased the melting temperature of the hard segment chains, that is, heat resistance, and decreased the Young's modulus. This could be due to the low density of the physical cross-linking network and the dispersion of hard segment chains in the soft segment matrix in the PUE in the presence of 20% TMP.

키워드

참고문헌

  1. Z. S. Petrovic and J. Ferguson, "Polyurethane elastomers", Prog. Polym. Sci., 16, 695 (1991). https://doi.org/10.1016/0079-6700(91)90011-9
  2. Z. S. Petrovic and J. Budinski-Simendic, "Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. The effect on physical and morphological properties", Rubber Chem. Technol., 58, 685 (1985). https://doi.org/10.5254/1.3536086
  3. Z. S. Petrovic and J. Budinski-Simendic, "Study of the effect of soft segment length and concentration on properties of polyetherurethanes. I. The effect on physical and morphological properties", Rubber Chem. Technol., 58, 701 (1985). https://doi.org/10.5254/1.3536087
  4. K. Kojio, T. Fukumaru, and M. Furukawa, "Highly softened polyurethane elastomer synthesized with novel 1,2-bis(isocyanate) ethoxyethane", Macromolecules, 37, 3287 (2004). https://doi.org/10.1021/ma0359988
  5. K. Kojio, S. Nakashima, and M. Furukawa, "Microphase-separated structure and mechanical properties of norbornane diisocyanate-based polyurethanes", Polymer, 48, 997 (2007). https://doi.org/10.1016/j.polymer.2006.12.057
  6. Y. Higaki, K. Suzuki, Y. Oniki, K. White, N. Ohta, and A. Takahara, "Molecular aggregation structure evolution during stretching of environmentally benign lysine-based segmented poly(urethane-urea)s", Polymer, 78, 173 (2015). https://doi.org/10.1016/j.polymer.2015.10.002
  7. S. Nozaki, S. Masuda, K. Kamitani, K. Kojio, A. Takahara, G. Kuwamura, D. Hasegawa, K. Moorthi, K. Mita, and S. Yamasaki, "Superior Properties of Polyurethane Elastomers Synthesized with Aliphatic Diisocyanate Bearing a Symmetric Structure", Macromolecules, 50, 1008 (2017). https://doi.org/10.1021/acs.macromol.6b02044
  8. R. Rahmawati, S. Nozaki, K. Kojio, A. Takahara, N. Shinohara, and S. Yamasaki, "Microphase-separated structure and mechanical properties of cycloaliphatic diisocyanate-based thiourethane elastomers", Polym. J., 51, 265 (2019). https://doi.org/10.1038/s41428-018-0148-1
  9. K. Kojio, R. Rahmawati, N. Shinohara, and S. Yamasaki, "Molecular Aggregation Structure and Mechanical Properties of Low-Hard Segment Content Polyurethane and Polythio-urethane Elastomers Based on Cycloaliphatic Diisocyanate with a Symmetric Structure", J. Adhes. Soc. Jpn., 55, 181 (2019). https://doi.org/10.11618/adhesion.55.181
  10. D. Orthaber, A. Bergmann, and O. Glatter, "SAXS experiments on absolute scale with Kratky systems using water as a secondary standard", J. Appl. Crystallogr., 33, 218 (2000). https://doi.org/10.1107/S0021889899015216
  11. M. Furukawa, Y. Hamada, and K. Kojio, "Aggregation structure and mechanical properties of functionally graded polyurethane elastomers", J. Polym. Sci., Part B: Polym. Phys., 41, 2355 (2003). https://doi.org/10.1002/polb.10628
  12. K. Kojio, S. Nakamura, and M. Furukawa, "Effect of side methyl groups of polymer glycol on elongation-induced crystallization behavior of polyurethane elastomers", Polymer, 45, 8147 (2004). https://doi.org/10.1016/j.polymer.2004.09.061
  13. K. Kojio, Y. Nonaka, T. Masubuchi, and M. Furukawa, "Effect of the composition ratio of copolymerized poly(carbonate) glycol on the microphase-separated structures and mechanical properties of polyurethane elastomers", J. Polym. Sci., Part B: Polym. Phys., 42, 4448 (2004). https://doi.org/10.1002/polb.20303
  14. K. Kojio, M. Furukawa, S. Motokucho, M. Shimada, and M. Sakai, "Structure-Mechanical Property Relationships for Poly(carbonate urethane) Elastomers with Novel Soft Segments", Macromolecules, 42, 8322 (2009). https://doi.org/10.1021/ma901317t
  15. C. M. Brunette, S. L. Hsu, and W. J. Macknight, "Hydrogenbonding properties of hard-segment model compounds in polyurethane block copolymers", Macromolecules, 15, 71 (1982). https://doi.org/10.1021/ma00229a014
  16. H. S. Lee, Y. K. Wang, and S. L. Hsu, "Spectroscopic analysis of phase-separation behavior of model polyurethanes", Macromolecules, 20, 2089 (1987). https://doi.org/10.1021/ma00175a008
  17. R. Bonart and E. H. Muller, "Phase separation in urethane elastomers as judged by low-angle x-ray-scattering. 2. Experimental results", J. Macromol. Sci. Phys., B 10, 345 (1974). https://doi.org/10.1080/00222347408260835
  18. J. T. Koberstein and R. S. Stein, "Small-angle x-ray-scattering studies of microdomain structure in segmented polyurethane elastomers", J. Polym. Sci., Part B: Polym. Phys., 21, 1439 (1983). https://doi.org/10.1002/pol.1983.180210814
  19. G. Kuwamura, T. Nakagawa, D. Hasegawa, and S. Yamasaki, "Bis(isocyanatomethyl)cyclohexane for making polyurethane resin useful for various applications", WO2009051114A1 (2009).