DOI QR코드

DOI QR Code

Optimization of Polyethylene Glycol-Mediated Transformation of the Pepper Anthracnose Pathogen Colletotrichum scovillei to Develop an Applied Genomics Approach

  • Shin, Jong-Hwan (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Han, Joon-Hee (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Park, Hyun-Hoo (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Fu, Teng (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University) ;
  • Kim, Kyoung Su (Division of Bio-Resource Sciences and BioHerb Research Institute, Kangwon National University)
  • Received : 2019.06.22
  • Accepted : 2019.08.30
  • Published : 2019.12.01

Abstract

Colletotrichum acutatum is a species complex responsible for anthracnose disease in a wide range of host plants. Strain C. acutatum KC05, which was previously isolated from an infected pepper in Gangwon Province of South Korea, was reidentified as C. scovillei using combined sequence analyses of multiple genes. As a prerequisite for understanding the pathogenic development of the pepper anthracnose pathogen, we optimized the transformation system of C. scovillei KC05. Protoplast generation from young hyphae of KC05 was optimal in an enzymatic digestion using a combined treatment of 2% lysing enzyme and 0.8% driselase in 1 M NH4Cl for 3 h incubation. Prolonged incubation for more than 3 h decreased protoplast yields. Protoplast growth of KC05 was completely inhibited for 4 days on regeneration media containing 200 ㎍/ml hygromycin B, indicating the viability of this antibiotic as a selection marker. To evaluate transformation efficiency, we tested polyethylene glycol-mediated protoplast transformation of KC05 using 19 different loci found throughout 10 (of 27) scaffolds, covering approximately 84.1% of the entire genome. PCR screening showed that the average transformation efficiency was about 17.1% per 100 colonies. Southern blot analyses revealed that at least one transformant per locus had single copy integration of PCR-screened positive transformants. Our results provide valuable information for a functional genomics approach to the pepper anthracnose pathogen C. scovillei.

Keywords

References

  1. Armesto, C., Maia, F. G. M., de Abreu, M. S., Figueira, A. D. R., da Silva, B. M. and Monteiro, F. P. 2012. Genetic transformation with the gfp gene of Colletotrichum gloeosporioides isolates from coffee with blister spot. Braz. J. Microbiol. 43:1222-1229. https://doi.org/10.1590/S1517-83822012000300050
  2. Bailey, J. A. and Jeger, M. J. 1992. Colletotrichum: biology, pathology and control. C.A.B. International, Wallingford, UK. 388 pp.
  3. Baroncelli, R., Talhinhas, P., Pensec, F., Sukno, S. A., Le Floch, G. and Thon, M. R. 2017. The Colletotrichum acutatum species complex as a model system to study evolution and host specialization in plant pathogens. Front. Microbiol. 8:2001. https://doi.org/10.3389/fmicb.2017.02001
  4. Braganca, C. A. D., Damm, U., Baroncelli, R., Massola Junior, N. S. and Crous, P. W. 2016. Species of the Colletotrichum acutatum complex associated with anthracnose diseases of fruit in Brazil. Fungal Biol. 120:547-561. https://doi.org/10.1016/j.funbio.2016.01.011
  5. Caires, N. P., Pinho, D. B., Souza, J. S. C., Silva, M. A., Lisboa, D. O., Pereira, O. L. and Furtado, G. Q. 2014. First report of anthracnose on pepper fruit caused by Colletotrichum scovillei in Brazil. Plant Dis. 98:1437.
  6. Chadegani, M., Brink, J. J., Shehata, A. and Ahmadjian, V. 1989. Optimization of protoplast formation, regeneration, and viability in Microsporum gypseum. Mycopathologia 107:33-50. https://doi.org/10.1007/BF00437588
  7. Cheng, Y. and Belanger, R. R. 2000. Protoplast preparation and regeneration from spores of the biocontrol fungus Pseudozyma flocculosa. FEMS Microbiol. Lett. 190:287-291. https://doi.org/10.1016/S0378-1097(00)00350-5
  8. Chi, M.-H., Park, S.-Y. and Lee, Y.-H. 2009. A quick and safe method for fungal DNA extraction. Plant Pathol. J. 25:108-111. https://doi.org/10.5423/PPJ.2009.25.1.108
  9. Chi, T. T. P., Choi, O., Kwak, Y.-S., Son, D., Lee, J. J. and Kim, J. 2013. Streptomyces padanus for the biological control of Phytophthora capsici on pepper plants. J. Agric. Life Sci. 47:1-9. https://doi.org/10.14397/jals.2013.47.6.1
  10. Chung, H., Choi, J., Park, S.-Y., Jeon, J. and Lee, Y.-H. 2013. Two conidiation-related Zn(II)2Cys6 transcription factor genes in the rice blast fungus. Fungal Genet. Biol. 61:133-141. https://doi.org/10.1016/j.fgb.2013.10.004
  11. Chung, K.-R., Shilts, T., Li, W. and Timmer, L. W. 2002. Engineering a genetic transformation system for Colletotrichum acutatum, the causal fungus of lime anthracnose and postbloom fruit drop of citrus. FEMS Microbiol. Lett. 213:33-39. https://doi.org/10.1016/S0378-1097(02)00757-7
  12. Damm, U., Cannon, P. F., Woudenberg, J. H. C. and Crous, P. W. 2012. The Colletotrichum acutatum species complex. Stud. Mycol. 73:37-113. https://doi.org/10.3114/sim0010
  13. da Silva Coelho, I., de Queiroz, M. V., Costa, M. D., Kasuya, M. C. M. and de Araujo, E. F. 2010. Production and regeneration of protoplasts from orchid mycorrhizal fungi Epulorhiza repens and Ceratorhiza sp. Braz. Arch. Biol. Technol. 53:153-159. https://doi.org/10.1590/S1516-89132010000100019
  14. de Silva, D. D., Ades, P. K., Crous, P. W. and Taylor, P. W. J. 2017. Colletotrichum species associated with chili anthracnose in Australia. Plant Pathol. 66:254-267. https://doi.org/10.1111/ppa.12572
  15. Diao, Y.-Z., Zhang, C., Liu, F., Wang, W.-Z., Liu, L., Cai, L. and Liu, X.-L. 2017. Colletotrichum species causing anthracnose disease of chili in China. Persoonia 38:20-37. https://doi.org/10.3767/003158517X692788
  16. Dias, J. S. 2012. Nutritional quality and health benefits of vegetables: a review. Food Nutr. Sci. 3:1354-1374. https://doi.org/10.4236/fns.2012.310179
  17. Eyini, M., Rajkumar, K. and Balaji, P. 2006. Isolation, regeneration and PEG-induced fusion of protoplasts of Pleurotus pulmonarius and Pleurotus florida. Mycobiology 34:73-78. https://doi.org/10.4489/MYCO.2006.34.2.073
  18. Fincham, J. R. S. 1989. Transformation in fungi. Microbiol. Rev. 53:148-170. https://doi.org/10.1128/mr.53.1.148-170.1989
  19. Han, J.-H., Chon, J.-K., Ahn, J.-H., Choi, I.-Y., Lee, Y.-H. and Kim, K. S. 2016. Whole genome sequence and genome annotation of Colletotrichum acutatum, causal agent of anthracnose in pepper plants in South Korea. Genom. Data 8:45-46. https://doi.org/10.1016/j.gdata.2016.03.007
  20. Han, J.-H., Lee, H.-M., Shin, J.-H., Lee, Y.-H. and Kim, K. S. 2015. Role of the MoYAK1 protein kinase gene in Magnaporthe oryzae development and pathogenicity. Environ. Microbiol. 17:4672-4689. https://doi.org/10.1111/1462-2920.13010
  21. Hayat, S. and Christias, C. 2010. Isolation and fusion of protoplasts from the phytopathogenic fungus Sclerotium rolfsii (Sacc.). Braz. J. Microbiol. 41:253-263. https://doi.org/10.1590/S1517-83822010000100035
  22. Hynes, M. J. 1996. Genetic transformation of filamentous fungi. J. Genet. 75:297-311. https://doi.org/10.1007/BF02966310
  23. Kanto, T., Uematsu, S., Tsukamoto, T., Moriwaki, J., Yamagishi, N., Usami, T. and Sato, T. 2014. Anthracnose of sweet pepper caused by Colletotrichum scovillei in Japan. J. Gen. Plant Pathol. 80:73-78. https://doi.org/10.1007/s10327-013-0496-9
  24. Kim, S., Park, S.-Y., Kim, K. S., Rho, H.-S., Chi, M.-S., Choi, J., Park, J., Kong, S., Park, J., Goh, J. and Lee, Y.-H. 2009. Homeobox transcription factors are required for conidiation and appressorium development in the rice blast fungus Magnaporthe oryzae. PLoS Genet. 5:e1000757. https://doi.org/10.1371/journal.pgen.1000757
  25. Kraft, K. H., Brown, C. H., Nabhan, G. P., Luedeling, E., Luna Ruize, J. D. J., d'Eeckenbrugge, G. C., Hijmans, R. J. and Gepts, P. 2014. Multiple lines of evidence for the origin of domesticated chili pepper, Capsicum annuum, in Mexico. Proc. Natl. Acad. Sci. U. S. A. 111:6165-6170. https://doi.org/10.1073/pnas.1308933111
  26. Liu, Z. and Friesen, T. L. 2012. Polyethylene glycol (PEG)-mediated transformation in filamentous fungal pathogens. Methods Mol. Biol. 835:365-375. https://doi.org/10.1007/978-1-61779-501-5_21
  27. Mannai, S., Jabnoun-Khiareddine, H., Nasraoui, B. and Daami-Remadi, M. 2018. Rhizoctonia root rot of pepper (Capsicum annuum): comparative pathogenicity of causal agent and biocontrol attempt using fungal and bacterial agents. J. Plant Pathol. Microbiol. 9:2.
  28. Maruthachalam, K., Nair, V., Rho, H.-S., Choi, J., Kim, S. and Lee, Y.-H. 2008. Agrobacterium tumefaciens-mediated transformation in Colletotrichum falcatum and C. acutatum. J. Microbiol. Biotechnol. 18:234-241.
  29. Mathur, J. and Koncz, C. 1998. PEG-mediated protoplast transformation with naked DNA. Methods Mol. Biol. 82:267-276.
  30. Moradi, S., Sanjarian, F., Safaie, N., Mousavi, A. and Bakhshi Khaniki, G. R. 2013. A modified method for transformation of Fusarium graminearum. J. Crop Prot. 2:297-304.
  31. Oo, M. M., Lim, G., Jang, H. A. and Oh, S.-K. 2017. Characterization and pathogenicity of new record of anthracnose on various chili varieties caused by Colletotrichum scovillei in Korea. Mycobiology 45:184-191. https://doi.org/10.5941/MYCO.2017.45.3.184
  32. Park, J., Kong, S., Kim, S., Kang, S. and Lee, Y.-H. 2014. Roles of forkhead-box transcription factors in controlling development, pathogenicity, and stress response in Magnaporthe oryzae. Plant Pathol. J. 30:136-150. https://doi.org/10.5423/PPJ.OA.02.2014.0018
  33. Ramamoorthy, V., Govindaraj, L., Dhanasekaran, M., Vetrivel, S., Kumar, K. K. and Ebenezar, E. 2015. Combination of driselase and lysing enzyme in one molar potassium chloride is effective for the production of protoplasts from germinated conidia of Fusarium verticillioides. J. Microbiol. Methods 111:127-134. https://doi.org/10.1016/j.mimet.2015.02.010
  34. Rehman, L., Su, X., Guo, H., Qi, X. and Cheng, H. 2016. Protoplast transformation as a potential platform for exploring gene function in Verticillium dahliae. BMC Biotechnol. 16:57. https://doi.org/10.1186/s12896-016-0287-4
  35. Saxena, A., Raghuwanshi, R., Gupta, V. K. and Singh, H. B. 2016. Chilli anthracnose: the epidemiology and management. Front. Microbiol. 7:1527.
  36. Shin, J.-H., Han, J.-H. and Kim, K. S. 2014. Genome-wide analyses of DNA-binding proteins harboring AT-hook motifs and their functional roles in the rice blast pathogen, Magnaporthe oryzae. Genes Genomics 36:871-881. https://doi.org/10.1007/s13258-014-0233-6
  37. Song, Z., Bakeer, W., Marshall, J. W., Yakasai, A. A., Khalid, R. M., Collemare, J., Skellam, E., Tharreau, D., Lebrun, M.-H., Lazarus, C. M., Bailey, A. M., Simpson, T. J. and Cox, R. J. 2015. Heterologous expression of the avirulence gene ACE1 from the fungal rice pathogen Magnaporthe oryzae. Chem. Sci. 6:4837-4845. https://doi.org/10.1039/C4SC03707C
  38. Sweigard, J. A., Chumley, F. G. and Valent, B. 1992. Disruption of a Magnaporthe grisea cutinase gene. Mol. Gen. Genet. 232:183-190. https://doi.org/10.1007/BF00279995
  39. Talhinhas, P., Muthumeenakshi, S., Neves-Martins, J., Oliveira, H. and Sreenivasaprasad, S. 2008. Agrobacterium-mediated transformation and insertional mutagenesis in Colletotrichum acutatum for investigating varied pathogenicity lifestyles. Mol. Biotechnol. 39:57-67. https://doi.org/10.1007/s12033-007-9028-1
  40. Than, P. P., Prihastuti, H., Phoulivong, S., Taylor, P. W. J. and Hyde, K. D. 2008. Chilli anthracnose disease caused by Colletotrichum species. J. Zhejiang Univ. Sci. B 9:764-778. https://doi.org/10.1631/jzus.B0860007
  41. Wang, Q., An, B., Hou, X., Guo, Y., Luo, H. and He, C. 2018a. Dicer-like proteins regulate the growth, conidiation, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Front. Microbiol. 8:2621. https://doi.org/10.3389/fmicb.2017.02621
  42. Wang, Q., Cobine, P. A. and Coleman, J. J. 2018b. Efficient genome editing in Fusarium oxysporum based on CRISPR/Cas9 ribonucleoprotein complexes. Fungal Genet. Biol. 117:21-29. https://doi.org/10.1016/j.fgb.2018.05.003
  43. Xiao, S., Sun, Y., Tian, C. and Wang, Y. 2013. Optimization of factors affecting protoplast preparation and transformation of smoke-tree wilt fungus Verticillium dahliae. Afr. J. Microbiol. Res. 7:2712-2718. https://doi.org/10.5897/AJMR2013.5793
  44. Yoruk, E. and Albayrak, G. 2015. Geneticin (G418) resistance and electroporation-mediated transformation of Fusarium graminearum and F. culmorum. Biotechnol. Equip. 29:268-273. https://doi.org/10.1080/13102818.2014.996978
  45. Zhao, W., Wang, T., Chen, Q. Q., Chi, Y. K., Swe, T. M. and Qi, R. D. 2016. First report of Colletotrichum scovillei causing anthracnose fruit rot on pepper in Anhui Province, China. Plant Dis. 100:2168.