DOI QR코드

DOI QR Code

Proteomic Changes in the Sound Vibration-Treated Arabidopsis thaliana Facilitates Defense Response during Botrytis cinerea Infection

  • Ghosh, Ritesh (Department of Biotechnology, Yeungnam University) ;
  • Choi, Bosung (Department of Biotechnology, Yeungnam University) ;
  • Kwon, Young Sang (Environmental Toxicology Research Center, Korea Institute of Toxicology) ;
  • Bashir, Tufail (Department of Biotechnology, Yeungnam University) ;
  • Bae, Dong-Won (Central Instrument Facility, Gyeongsang National University) ;
  • Bae, Hanhong (Department of Biotechnology, Yeungnam University)
  • 투고 : 2018.11.07
  • 심사 : 2019.10.07
  • 발행 : 2019.12.01

초록

Sound vibration (SV) treatment can trigger various molecular and physiological changes in plants. Previously, we showed that pre-exposure of Arabidopsis plants to SV boosts its defense response against Botrytis cinerea fungus. The present study was aimed to investigate the changes in the proteome states in the SV-treated Arabidopsis during disease progression. Proteomics analysis identified several upregulated proteins in the SV-infected plants (i.e., SV-treated plants carrying Botrytis infection). These upregulated proteins are involved in a plethora of biological functions, e.g., primary metabolism (i.e., glycolysis, tricarboxylic acid cycle, ATP synthesis, cysteine metabolism, and photosynthesis), redox homeostasis, and defense response. Additionally, our enzyme assays confirmed the enhanced activity of antioxidant enzymes in the SV-infected plants compared to control plants. Broadly, our results suggest that SV pre-treatment evokes a more efficient defense response in the SV-infected plants by modulating the primary metabolism and reactive oxygen species scavenging activity.

키워드

참고문헌

  1. Appel, H. M. and Cocroft, R. B. 2014. Plants respond to leaf vibrations caused by insect herbivore chewing. Oecologia 175:1257-1266. https://doi.org/10.1007/s00442-014-2995-6
  2. Balmer, A., Pastor, V., Gamir, J., Flors, V. and Mauch-Mani, B. 2015. The 'prime-ome': towards a holistic approach to priming. Trends Plant Sci. 20:443-452. https://doi.org/10.1016/j.tplants.2015.04.002
  3. Bellincampi, D., Cervone, F. and Lionetti, V. 2014. Plant cell wall dynamics and wall-related susceptibility in plant-pathogen interactions. Front. Plant Sci. 5:228. https://doi.org/10.3389/fpls.2014.00228
  4. Bernsdorff, F., Doring, A. C., Gruner, K., Schuck, S., Brautigam, A. and Zeier, J. 2016. Pipecolic acid orchestrates plant systemic acquired resistance and defense priming via salicylic acid-dependent and -independent pathways. Plant Cell 28:102-129. https://doi.org/10.1105/tpc.15.00496
  5. Bolouri Moghaddam, M. R. and van den Ende, W. 2012. Sugars and plant innate immunity. J. Exp. Bot. 63:3989-3998. https://doi.org/10.1093/jxb/ers129
  6. Bolton, M. D. 2009. Primary metabolism and plant defense: fuel for the fire. Mol. Plant-Microbe Interact. 22:487-497. https://doi.org/10.1094/MPMI-22-5-0487
  7. Braam, J. 2005. In touch: plant responses to mechanical stimuli. New Phytol. 165:373-389. https://doi.org/10.1111/j.1469-8137.2004.01263.x
  8. Caplan, J. L., Kumar, A. S., Park, E., Padmanabhan, M. S., Hoban, K., Modla, S., Czymmek, K. and Dinesh-Kumar, S. P. 2015. Chloroplast stromules function during innate immunity. Dev. Cell 34:45-57. https://doi.org/10.1016/j.devcel.2015.05.011
  9. Chehab, E. W., Wang, Y. and Braam, J. 2011. Mechanical force responses of plant cells and plants. In: Mechanical integration of plant cells and plants, ed. by P. Wojtaszek, pp. 173-194.
  10. Springer-Verlag Berlin Heidelberg, Heidelberg, Germany. Chehab, E. W., Yao, C., Henderson, Z., Kim, S. and Braam, J. 2012. Arabidopsis touch-induced morphogenesis is jasmonate mediated and protects against pests. Curr. Biol. 22:701-706. https://doi.org/10.1016/j.cub.2012.02.061
  11. Chien, C.-H., Chow, C.-N., Wu, N.-Y., Chiang-Hsieh, Y.-F., Hou, P.-F. and Chang, W.-C. 2015. EXPath: a database of comparative expression analysis inferring metabolic pathways for plants. BMC Genomics 16 Suppl 2:S6.
  12. Choi, B., Ghosh, R., Gururani, M. A., Shanmugam, G., Jeon, J., Kim, J., Park, S.-C., Jeong, M.-J., Han, K.-H., Bae, D.-W. and Bae, H. 2017. Positive regulatory role of sound vibration treatment in Arabidopsis thaliana against Botrytis cinerea infection. Sci. Rep. 7:2527. https://doi.org/10.1038/s41598-017-02556-9
  13. Ghosh, R., Gururani, M. A., Ponpandian, L. N., Mishra, R. C., Park, S.-C., Jeong, M.-J. and Bae, H. 2017. Expression analysis of sound vibration-regulated genes by touch treatment in Arabidopsis. Front. Plant Sci. 8:100.
  14. Ghosh, R., Mishra, R. C., Choi, B., Kwon, Y. S., Bae, D. W., Park, S.-C., Jeong, M.-J. and Bae, H. 2016. Exposure to sound vibrations lead to transcriptomic, proteomic and hormonal changes in Arabidopsis. Sci. Rep. 6:33370. https://doi.org/10.1038/srep33370
  15. Herbers, K., Meuwly, P., Metraux, J.-P. and Sonnewald, U. 1996. Salicylic acid-independent induction of pathogenesis-related protein transcripts by sugars is dependent on leaf developmental stage. FEBS Lett. 397:239-244. https://doi.org/10.1016/S0014-5793(96)01183-0
  16. Iida, H. 2014. Mugifumi, a beneficial farm work of adding mechanical stress by treading to wheat and barley seedlings. Front. Plant Sci. 5:453. https://doi.org/10.3389/fpls.2014.00453
  17. Kwon, Y. S., Lee, D. Y., Rakwal, R., Baek, S.-B., Lee, J. H., Kwak, Y.-S., Seo, J.-S., Chung, W. S., Bae, D.-W. and Kim, S. G. 2016. Proteomic analyses of the interaction between the plant-growth promoting rhizobacterium Paenibacillus polymyxa E681 and Arabidopsis thaliana. Proteomics 16:122-135. https://doi.org/10.1002/pmic.201500196
  18. Kwon, Y. S., Ryu, C.-M., Lee, S., Park, H. B., Han, K. S., Lee, J. H., Lee, K., Chung, W. S., Jeong, M.-J., Kim, H. K. and Bae, D.-W. 2010. Proteome analysis of Arabidopsis seedlings exposed to bacterial volatiles. Planta 232:1355-1370. https://doi.org/10.1007/s00425-010-1259-x
  19. Li, B., Wei, J., Wei, X., Tang, K., Liang, Y., Shu, K. and Wang, B. 2008. Effect of sound wave stress on antioxidant enzyme activities and lipid peroxidation of Dendrobium candidum. Colloids Surf. B Biointerfaces 63:269-275. https://doi.org/10.1016/j.colsurfb.2007.12.012
  20. Li, Z.-G. and Gong, M. 2011. Mechanical stimulation-induced cross-adaptation in plants: an overview. J. Plant Biol. 54:358-364. https://doi.org/10.1007/s12374-011-9178-3
  21. Liu, G., Ji, Y., Bhuiyan, N. H., Pilot, G., Selvaraj, G., Zou, J. and Wei, Y. 2010. Amino acid homeostasis modulates salicylic acid-associated redox status and defense responses in Arabidopsis. Plant Cell 22:3845-3863. https://doi.org/10.1105/tpc.110.079392
  22. Liu, Y., Ahn, J.-E., Datta, S., Salzman, R. A., Moon, J., Huyghues-Despointes, B., Pittendrigh, B., Murdock, L. L., Koiwa, H. and Zhu-Salzman, K. 2005. Arabidopsis vegetative storage protein is an anti-insect acid phosphatase. Plant Physiol. 139:1545-1556. https://doi.org/10.1104/pp.105.066837
  23. Lopez-Ribera, I. and Vicient, C. M. 2017. Drought tolerance induced by sound in Arabidopsis plants. Plant Signal. Behav. 12:e 1368938. https://doi.org/10.1080/15592324.2017.1368938
  24. Martinez, M., Abraham, Z., Gambardella, M., Echaide, M., Carbonero, P. and Diaz, I. 2005. The strawberry gene Cyf1 encodes a phytocystatin with antifungal properties. J. Exp. Bot. 56:1821-1829. https://doi.org/10.1093/jxb/eri172
  25. Martinez-Medina, A., Flors, V., Heil, M., Mauch-Mani, B., Pieterse, C. M. J., Pozo, M. J., Ton, J., van Dam, N. M. and Conrath, U. 2016. Recognizing plant defense priming. Trends Plant Sci. 21:818-822. https://doi.org/10.1016/j.tplants.2016.07.009
  26. Mishra, R. C., Ghosh, R. and Bae, H. 2016. Plant acoustics: in the search of a sound mechanism for sound signaling in plants. J. Exp. Bot. 67:4483-4494. https://doi.org/10.1093/jxb/erw235
  27. Monshausen, G. B. and Haswell, E. S. 2013. A force of nature: molecular mechanisms of mechanoperception in plants. J. Exp. Bot. 64:4663-4680. https://doi.org/10.1093/jxb/ert204
  28. Pastor, V., Luna, E., Mauch-Mani, B., Ton, J. and Flors, V. 2013. Primed plants do not forget. Environ. Exp. Bot. 94:46-56. https://doi.org/10.1016/j.envexpbot.2012.02.013
  29. Peumans, W. J. and van Damme, E. J. M. 1995. The role of lectins in plant defence. Histochem. J. 27:253-271. https://doi.org/10.1007/BF00398968
  30. Qi, L., Teng, G., Hou, T., Zhu, B. and Liu, X. 2010. Influence of sound wave stimulation on the growth of strawberry in sunlight greenhouse. In: Computer and computing technologies in agriculture (III), eds. by D. L. Li and C. Zhao, pp. 449-454.
  31. Springer-Verlag Berlin Heidelberg, Heidelberg, Germany. Rausch, T. and Wachter, A. 2005. Sulfur metabolism: a versatile platform for launching defence operations. Trends Plant Sci. 10:503-509. https://doi.org/10.1016/j.tplants.2005.08.006
  32. Rojas, C. M., Senthil-Kumar, M., Wang, K., Ryu, C.-M., Kaundal, A. and Mysore, K. S. 2012. Glycolate oxidase modulates reactive oxygen species-mediated signal transduction during nonhost resistance in Nicotiana benthamiana and Arabidopsis. Plant Cell 24:336-352. https://doi.org/10.1105/tpc.111.093245
  33. Safari, M., Ghanati, F., Behmanesh, M., Hajnorouzi, A., Nahidian, B. and Mina, G. 2013. Enhancement of antioxidant enzymes activity and expression of CAT and PAL genes in hazel (Corylus avellana L.) cells in response to low-intensity ultrasound. Acta Physiol. Plant. 35:2847-2855. https://doi.org/10.1007/s11738-013-1318-6
  34. van Kan, J. A. L. 2006. Licensed to kill: the lifestyle of a necrotrophic plant pathogen. Trends Plant Sci. 11:247-253. https://doi.org/10.1016/j.tplants.2006.03.005
  35. Wan, R., Hou, X., Wang, X., Qu, J., Singer, S. D., Wang, Y. and Wang, X. 2015. Resistance evaluation of Chinese wild Vitis genotypes against Botrytis cinerea and different responses of resistant and susceptible hosts to the infection. Front. Plant Sci. 6:854. https://doi.org/10.3389/fpls.2015.00854
  36. Wang, B., Zhao, H., Wang, X., Duan, C., Wang, D. and Sakanishi, A. 2002. Influence of sound stimulation on plasma membrane H+-ATPase activity. Colloids Surf. B Biointerfaces 25:183-188. https://doi.org/10.1016/S0927-7765(01)00320-4
  37. Wei, M., Yang, C.-Y. and Wei, S.-H. 2012. Enhancement of the differentiation of protocorm-like bodies of Dendrobium officinale to shoots by ultrasound treatment. J. Plant Physiol. 169:770-774. https://doi.org/10.1016/j.jplph.2012.01.018
  38. Xiao, W., Sheen, J. and Jang, J.-C. 2000. The role of hexokinase in plant sugar signal transduction and growth and development. Plant Mol. Biol. 44:451-461. https://doi.org/10.1023/A:1026501430422
  39. Xiaocheng, Y., Bochu, W. and Chuanren, D. 2003. Effects of sound stimulation on energy metabolism of Actinidia chinensis callus. Colloids Surf. B Biointerfaces 30:67-72. https://doi.org/10.1016/S0927-7765(03)00027-4
  40. Xiujuan, W., Bochu, W., Yi, J., Defang, L., Chuanren, D., Xiaocheng, Y. and Sakanishi, A. 2003. Effects of sound stimulation on protective enzyme activities and peroxidase isoenzymes of chrysanthemum. Colloids Surf. B Biointerfaces 27:59-63. https://doi.org/10.1016/S0927-7765(02)00038-3
  41. Yi, J., Bochu, W., Xiujuan, W., Chuanren, D. and Xiaocheng, Y. 2003. Effect of sound stimulation on roots growth and plasmalemma H+-ATPase activity of chrysanthemum (Gerbera jamesonii). Colloids Surf. B Biointerfaces 27:65-69. https://doi.org/10.1016/S0927-7765(02)00037-1
  42. Zhang, Z., Ober, J. A. and Kliebenstein, D. J. 2006. The gene controlling the quantitative trait locus EPITHIOSPECIFIER MODIFIER1 alters glucosinolate hydrolysis and insect resistance in Arabidopsis. Plant Cell 18:1524-1536. https://doi.org/10.1105/tpc.105.039602