DOI QR코드

DOI QR Code

Evaluation of Photochemical Reflectance Index (PRI) Response to Soybean Drought stress under Climate Change Conditions

기후변화 조건에서 콩 한발스트레스에 대한 광화학 반사 지수 반응 평가

  • Sang, Wan-Gyu (National Institute of Crop Science, Rural Development Administration) ;
  • Kim, Jun-Hwan (National Institute of Crop Science, Rural Development Administration) ;
  • Shin, Pyeong (National Institute of Crop Science, Rural Development Administration) ;
  • Baek, Jae-Kyeong (National Institute of Crop Science, Rural Development Administration) ;
  • Lee, Yun-Ho (National Institute of Crop Science, Rural Development Administration) ;
  • Cho, Jung-Il (National Institute of Crop Science, Rural Development Administration) ;
  • Seo, Myung-Chul (National Institute of Crop Science, Rural Development Administration)
  • 상완규 (농촌진흥청 국립식량과학원) ;
  • 김준환 (농촌진흥청 국립식량과학원) ;
  • 신평 (농촌진흥청 국립식량과학원) ;
  • 백재경 (농촌진흥청 국립식량과학원) ;
  • 이윤호 (농촌진흥청 국립식량과학원) ;
  • 조정일 (농촌진흥청 국립식량과학원) ;
  • 서명철 (농촌진흥청 국립식량과학원)
  • Received : 2019.11.11
  • Accepted : 2019.12.11
  • Published : 2019.12.30

Abstract

Climate change and drought stress are having profound impacts on crop growth and development by altering crop physiological processes including photosynthetic activity. But finding a rapid, efficient, and non-destructive method for estimating environmental stress responses in the leaf and canopy is still a difficult issue for remote sensing research. We compared the relationships between photochemical reflectance index(PRI) and various optical and experimental indices on soybean drought stress under climate change conditions. Canopy photosynthesis trait, biomass change, chlorophyll fluorescence(Fv/Fm), stomatal conductance showed significant correlations with midday PRI value across the drought stress period under various climate conditions. In high temperature treatment, PRI were more sensitive to enhanced drought stress, demonstrating the negative effect of the high temperature on the drought stress. But high CO2 concentration alleviated the midday depression of both photosynthesis and PRI. Although air temperature and CO2 concentration could affect PRI interpretation and assessment of canopy radiation use efficiency(RUE), PRI was significantly correlated with canopy RUE both under climate change and drought stress conditions, indicating the applicability of PRI for tracking the drought stress responses in soybean. However, it is necessary to develop an integrated model for stress diagnosis using PRI at canopy level by minimizing the influence of physical and physiological factors on PRI and incorporating the effects of other vegetation indices.

한발 발생이 갈수록 증가하고 있는 가운데, 작물의 생리생화학적 기작과 광합성능을 효율적으로 진단 및 평가 할 수 있는 방법을 찾는 것은 매우 중요한 과제이다. 본 연구를 통해 광화학 반사 지수인 PRI가 콩의 한발 스트레스에 대하여 고온과 고CO2 등 미래 기후 변화 환경에서도 유의미한 생육 지표로 활용될 수 있음을 확인하였다. PRI와 대표적 한발 생육지표들(군락 광이용효율, 건물중 변동율, 엽록소 형광, 기공전도도)과의 밀접한 관계를 통해 한발 스트레스 하에서 콩의 광합성 활성과 생장량을 원격으로 모니터링할수 있는 진단 모델 개발의 가능성을 볼 수 있었다. 다만 향후 고온, 고CO2 등 기후변화 조건에서 PRI의 성능에 대한 지속적인 평가와 함께 민감도 향상을 위한 광학지표 개발 및 모델 개선 연구가 선행되어야 할 것으로 보인다.

Keywords

References

  1. Ainsworth, E., S. Serbin, J. Skoneczka, and P. Townsend, 2013: Using leaf optical properties to detect ozone effects on foliar biochemistry. Photosynthesis Research 119(1), 65-76.
  2. Filella, I., J. Peñuelas, L. Llorens, and M. Estiarte, 2004: Reflectance assessment of seasonal and annual changes in biomass and $CO_2$ uptake of a Mediterranean shrubland submitted to experimental warming and drought. Remote Sensing of Environment 90(3), 308-318. https://doi.org/10.1016/j.rse.2004.01.010
  3. Filella, I., A. Porcar-Castell, S. Munne-Bosch, J. Back, M. Garbulsky, and J. Penuelas, 2009: PRI assessment of long-term changes in carotenoids/chlorophyll ratio and short-term changes in de-epoxidation state of the xanthophyll cycle. International Journal of Remote Sensing 30, 4443-4455. https://doi.org/10.1080/01431160802575661
  4. Gamon, J. A., and B. Bond, 2013: Effects of irradiance and photosynthetic downregulation on the photochemical reflectance index in Douglas-fir and ponderosa pine. Remote Sensing of Environment 135, 141-149. https://doi.org/10.1016/j.rse.2013.03.032
  5. Gamon, J. A., C. B. Field, W. Bilger, O. Björkman, A. L. Fredeen, and J. Penuelas, 1990: Remote sensing of the xanthophyll cycle and chlorophyll fluorescence in sunflower leaves and canopies. Oecologia 85(1), 1-7. https://doi.org/10.1007/BF00317336
  6. Garbulsky, M. F., J. Penuelas, J. Gamon, Y. Inoue, and I. Filella, 2011: The photochemical reflectance index (PRI) and the remote sensing of leaf, canopy and ecosystem radiation use efficiencies: A review and meta-analysis. Remote Sensing of Environment 115(2), 281-297. https://doi.org/10.1016/j.rse.2010.08.023
  7. Guarini, R., Nichol, R. Clement, Loizzo, Grace, and M. Borghetti, 2014: The utility of MODIS-sPRI for investigating the photosynthetic light-use efficiency in a Mediterranean deciduous forest. International Journal of Remote Sensing 35(16), 6157-6172. https://doi.org/10.1080/01431161.2014.950762
  8. Lambers, H., F. S. Chapin III, and T. Pons, 2008: Photosynthesis, Respiration, and Long-Distance Transport. Plant Physiological Ecology, Springer New York, 11-99.
  9. Pena-Rojas, K., X. Aranda, and I. Fleck, 2004: Stomatal limitation to $CO_2$ assimilation and down-regulation of photosynthesis in Quercus ilex resprouts in response to slowly imposed drought. Tree Physiology 24, 813-822. https://doi.org/10.1093/treephys/24.7.813
  10. Penuelas, J., M. Garbulsky, and I. Filella, 2011: Photochemical reflectance index (PRI) and remote sensing of plant $CO_2$ uptake. The New Phytologist 191, 596-599. https://doi.org/10.1111/j.1469-8137.2011.03791.x
  11. Penuelas, J., J. Llusia, J. Pinol, and I. Filella, 1997: Photochemical reflectance index and leaf photosynthetic radiation-use-efficiency assessment in Mediterranean trees. International Journal of Remote Sensing 18(13), 2863-2868. https://doi.org/10.1080/014311697217387
  12. Penuelas, J., T. Rutishauser, and I. Filella, 2009: Phenology feedbacks on climate change. Science 324, 887-888. https://doi.org/10.1126/science.1173004
  13. Porcar-Castell, A., J. I. Garcia Plazaola, C. Nichol, P. Kolari, B. Olascoaga, N. Kuusinen, B. Fernandez-Marin, M. Pulkkinen, E. Juurola, and E. Nikinmaa, 2012: Physiology of the seasonal relationship between photochemical reflectance index and photosynthetic light use efficiency. Oecologia 170, 313-323. https://doi.org/10.1007/s00442-012-2317-9
  14. Rossini, M., F. Fava, S. Cogliati, M. Meroni, A. Marchesi, C. Panigada, C. Giardino, L. Busetto, M. Migliavacca, S. Amaducci, and R. Colombo, 2013: Assessing canopy PRI from airborne imagery to map water stress in maize. ISPRS Journal of Photogrammetry and Remote Sensing 86, 168-177. https://doi.org/10.1016/j.isprsjprs.2013.10.002
  15. Sang, W., J. Kim, P. Shin, and J. Baek, 2019: Development of Korean SPAR (Soil-Plant-Atmosphere-Research) system for impact assessment of climate changes and environmental stress. Korean Journal of Agricultural and Forest Meteorology 21(3), 187-195. https://doi.org/10.5532/KJAFM.2019.21.3.187
  16. Suarez, L., P. J. Zarco-Tejada, G. Sepulcre-Canto, O. Perez-Priego, J. R. Miller, J. C. Jimenez-Munoz, and J. Sobrino, 2008: Assessing canopy PRI for water stress detection with diurnal airborne imagery. Remote Sensing of Environment 112(2), 560-575. https://doi.org/10.1016/j.rse.2007.05.009
  17. Zhang, C., I. Filella, M. Garbulsky, and J. Penuelas, 2016: Affecting factors and recent improvements of the Photochemical Reflectance Index (PRI) for remotely sensing foliar, canopy and ecosystemic Radiation-Use Efficiencies. Remote Sensing 8, 1-33. https://doi.org/10.3390/rs8010001
  18. Zhang, C., J. Penuelas, I. Filella Cubells, and Centre de Recerca Ecològica i Aplicacions Forestals, 2017: The Photochemical Reflectance Index (PRI) as an indicator of changes in photosynthetic dynamics and gross primary productivity in response to climate change. Universitat Autonoma de Barcelona 231.
  19. Zinnert, J., J. Nelson, and A. Hoffman, 2012: Effects of salinity on physiological responses and the photochemical reflectance index in two co-occurring coastal shrubs. Plant and Soil 354, 45-55. https://doi.org/10.1007/s11104-011-0955-z