DOI QR코드

DOI QR Code

Hot Wire Wind Speed Sensor System Without Ambient Temperature Compensation

주변 온도보상이 필요 없는 열선식 풍속 센서 시스템

  • Received : 2019.08.24
  • Accepted : 2019.08.30
  • Published : 2019.10.31

Abstract

Among the many ways to measure the flow of fluid the hot air wind speed sensor is a device for measuring the speed or temperature by heat transfer of a fluid. However, the hot wire wind speed sensor is sensitive to external environmental factors, and has a disadvantage of inaccuracy due to ambient temperature, humidity, and signal noise. In order to compensate for this disadvantage, advanced technology has been introduced by adding temperature compensation circuits, but it is expensive. In order to solve this problem, this paper studies the wind speed sensor that does not need temperature compensation. Heated wind speed sensors are very vulnerable to the ambient temperature, which is generated by electronic circuits, even among external environmental factors. in order to improve this, the auxiliary heating element is additionally installed in the heating element to control a constant temperature difference between the auxiliary heating element and the heating element.

유체의 흐름을 측정하는 여러 방법 중 열선 풍속 센서는 유체의 열전달에 의해 속도나 온도를 측정하는 장치로 비정상 속도 및 난류 속도 성분을 측정하는데 유용하다. 하지만 열선 풍속 센서는 외부의 환경 요인에 민감하며, 주변 온도, 습도, 신호 잡음 등에 의해 정확도가 떨어지는 단점이 있다. 이런 단점을 보완하는 방법으로 온도 보상 회로를 추가하는 기술이 나오고 있지만 가격 경쟁력을 갖출 수 없는 상황이다. 이를 해결하기 위해 본 논문에서는 온도 보상이 필요 없는 풍속 감지 센서에 대해 연구를 진행하였다. 열선식 풍속 센서는 외부 환경 요인 중에서도 주변 온도에 매우 취약하다. 주변 온도로는 전자 회로에 의한 발열의 영향이 가장 크게 미치고 있으며, 이를 개선하는 방법으로 발열체에 보조 발열체를 추가로 장착하여 보조발열체와 발열체의 일정한 온도차를 제어하는 것이다. 이와 같이 기존 기술에 비해 복잡하지 않은 방법으로 동등한 성능을 확보할 수 있다는 것을 확인할 수 있었다.

Keywords

Acknowledgement

This work (Grants No. S2658119) was supported by project for Cooperative R&D between Industry, Academy, and Research Institute funded Korea Ministry of SMEs and Startups in 2018.

References

  1. J. M. Lim, B. H. Yoon, and K. A. Park, "A Study on the Characteristics of Multi-point Pilot Tube Flow-meter," Journal of fluid Machinery, vol.4, no. 2, pp.35-43, 2001.
  2. S. C. Choi, S. H. Baek, S. K. Park, and D. H. Kim, "Development of Doppler Lidar System for Wind Direction and Wind Speed Observation," Journal of Korean Meteorological Society, pp. 96-97, Mar. 2012.
  3. H. C. Lim, D. I. Lee, and S. M. Jang, "Evaluation Study on Wind Retrieval Methods from Single-Doppler Radar," Journal of The Korean Environmental Sciences Society, vol. 18, no.3, pp. 333-343, Mar. 2009.
  4. W. J. Lee, J. H. Yim, and Y. G. Kang, "Implementation of Ultrasonic Anemometer & Anemoscope Data-Logger System," The journal of Korean Institute of Communications and Information Sciences, vol. 39, no. 2, pp. 184-190, 2014.
  5. D. J. Jeong, J. Y. Kim, S. J. Bae, and H. K. Jung, "Distributed IoT Sensor based Laboratory Safety Management System," Journal of the Korea Institute of Information and Communication Engineering, vol. 23, no. 1, pp.90-96, 2019. https://doi.org/10.6109/JKIICE.2019.23.1.90
  6. H. Kim, J. Kim, and H. Jung, "Convolutional Neural Network Based Im,age Processing System," Journal of information and communication convergence engineering, vol. 16, no. 3, pp. 160-172, Sep. 2018. https://doi.org/10.6109/JICCE.2018.16.3.160
  7. Y. M. Jin, S. W. Hong, and H. B. Kwon, "An evaluation of fire safety for very deep station considering the operation of emergency equipments," Journal of the Korean Society for Urban Railway, vol. 7, no. 1, pp. 119-131, 2019. https://doi.org/10.24284/JKOSUR.2019.3.7.1.119
  8. H. J. Kim, J. H. Jo, S. R. Ryu, and Y. H. Cho, "Development of Virtual Airflow Sensing Method in VAV Terminal Unit," Journal of Architectural Institute of Korea, vol. 39, no. 1, pp. 335-335, 2019.
  9. J. M. Kim, B. H. Choi, J. H. Choi, J. Y. Jung, B. H. Kim, T. J. Kim, J. E. Cha, H. R. Kim, and H. Y. Nam, "The Constitution and Operation of the Constant Temperature Anemometer (CTA:IFA 300)," Korea Atomic Energy Research institute: KAERI Technical Report TR-3049, 2005.
  10. KS P. 8202, KS Standard for a Anemometer for general use, KS, Korea, 2006.