DOI QR코드

DOI QR Code

셀룰라 IoT 네트워크를 위한 파일럿 지원 기회적 전송 기반 임의 접속 기법

A Random Access based on Pilot-Assisted Opportunistic Transmission for Cellular IoT Networks

  • Kim, Taehoon (Institute of Defense Advanced Technology Research (IDAR), Agency for Defense Development (ADD)) ;
  • Chae, Seong Ho (Department of Electronics Engineering, Korea Polytechnic University)
  • 투고 : 2019.08.29
  • 심사 : 2019.09.20
  • 발행 : 2019.10.31

초록

최근 5세대 이동통신 시스템은 4차 산업혁명의 핵심 요소로 큰 주목을 받고 있다. 본 논문에서는, 이동통신 시스템에서 사물인터넷 시나리오를 지원하기 위해 파일럿 지원 기회적 전송 기반의 새로운 임의 접속 기법을 제안한다. 제안하는 기법은 임의 접속 절차 3단계에서 데이터 패킷을 전송할 때 다수 개의 상향링크 자원 중 하나의 자원을 임의로 선택하여 기회적 전송을 하는 동시에 데이터 복호를 위해 각 데이터 패킷에 다중화하는 상향링크 파일럿 신호 또한 임의로 선택하게 함으로써 패킷 충돌 확률을 획기적으로 낮추는 것을 주요 특징으로 한다. 확률 모델을 이용하여 패킷 충돌 확률 및 상향링크 자원 효율 관점에서 제안한 기법을 수학적으로 분석 하고, 모의실험을 통해 분석의 유효성을 확인하고 제안 기법의 우수성을 입증한다.

Recently, 5G cellular systems have been attracted great attention as a key enabler for Industry 4.0. In this paper, we propose a novel random access based on pilot-assisted opportunistic transmission to support internet-of-things (IoT) scenario in cellular networks. A key feature of our proposed scheme is to enable each of IoT devices to attempt opportunistic transmission of its data packet in Step 3 with randomly selected uplink pilot signal. Both the opportunistic transmission and the pilot randomization in Step 3 are effective to significantly mitigate the occurrence of packet collisions. We mathematically analyze our proposed scheme in terms of packet collision probability and uplink resource efficiency. Through simulations, we verify the validity of our analysis and evaluate the performance of our proposed scheme. Numerical results show that our proposed scheme outperforms other competitive schemes.

키워드

과제정보

This work was supported by the Academic Promotion System of Korea Polytechnic University.

참고문헌

  1. M. R. Palattella, M. Dohler, A. Grieco, G. Rizzo, J. Torsner, T. Engel, and L. Ladid, "Internet of things in the 5G era: Enablers, architecture, and business models," IEEE Journal on Selected Areas in Communications, vol. 34, no. 3, pp. 510-527, Mar. 2016. https://doi.org/10.1109/JSAC.2016.2525418
  2. Evolved Universal Terrestrial Radio Access Network (E-UTRAN); Medium Access Control (MAC) protocol specification, 3GPP TS 36.321 V11.2.0, Mar. 2013.
  3. K. S. Ko, M. J. Kim, K. Y. Bae, D. K. Sung, J. H. Kim, and J. Y. Ahn, "A Novel Random Access for Fixed-Location Machine-to-Machine Communications in OFDMA Based Systems," IEEE Communications Letters, vol. 16, no. 9, pp. 1428-1431, Sep. 2012. https://doi.org/10.1109/LCOMM.2012.072012.120788
  4. T. Kim, H. S. Jang, and D. K. Sung, "An Enhanced Random Access Scheme with Spatial Group based Reusable Preamble Allocation in Cellular M2M Networks," IEEE Communications Letters, vol. 19, no. 10, pp. 1714-1717, Oct. 2015. https://doi.org/10.1109/LCOMM.2015.2473860
  5. J. S. Kim, D. Munir, S. F. Hasan, and M. Y. Chung, "Enhancement of LTE RACH through extended random access process," Electronics Letters, vol. 50, no. 19, pp. 1399-1400, Sep. 2014. https://doi.org/10.1049/el.2014.1159
  6. T. Kim, and S. H. Chae, "A Channel Estimator via Non-Orthogonal Pilot Signals for Uplink Cellular IoT," IEEE Access, vol. 9, pp. 53419-53428, May. 2019.
  7. S. H. Chae, B. C. Jung, and W. Choi, "On the achievable degrees-of-freedom by distributed scheduling in an (N,K) -user interference channel," IEEE Transactions on Communications, vol. 61, no. 6, pp. 2568-2579, Jun. 2013. https://doi.org/10.1109/TCOMM.2013.042313.120400
  8. S. Pratschner, S. Schwarz, and M. Rupp, "Single-user and multi-user MIMO channel estimation for LTE-advanced uplink," in Proceeding of IEEE International Conference on Communications (ICC), pp. 1-6, May. 2017.