DOI QR코드

DOI QR Code

Rectangular Microstrip Patch Antenna with Semicircular Structure for 5G Applications

5G 응용을 위한 반원형 구조를 가진 사각형 마이크로스트립 패치 안테나

  • Kim, Yeong-Jin (Department of Automatic System, Chosun College of Science & Technology) ;
  • Maharjan, Janam (Department of Information and Communication Engineering, Chosun University) ;
  • Choi, Dong-You (Department of Information and Communication Engineering, Chosun University)
  • Received : 2019.06.12
  • Accepted : 2019.09.06
  • Published : 2019.10.31

Abstract

The paper presents a design of simple four-element microstrip-patch array antenna that is suitable for 5G applications. The proposed array consists of four rectangular microstrip patch elements with semicircular etches made on both sides of each elements. The antenna is fed using the combination of series and corporate feeding networks. The size of the ground is also changed to improve the antenna frequency. Finally, yagi elements are also added to improve the directive gain of the antenna. The presented microstrip patch array is able to achieve wide frequency bandwidth of 21.95-31.86 GHz. The antenna has also attained gain of 9.7 dB at 28 GHz and has maintained high gain and high directivity throughout the frequency band. The proposed array antenna fed by series-corporate feeding network, with low profile and simple structure is a good candidate for 5G applications.

본 논문에서는 5G 어플리케이션을 위한 네 개의 마이크로스트립 패치 배열 안테나를 설계 및 분석하였다. 제안한 배열 안테나는 네 개의 사각형 마이크로스트립 패치 안테나로 구성되며, 배열 안테나의 양쪽 측면에 반원형 에칭구조가 포함된다. 안테나는 시리즈 및 동일 급전 네트워크를 사용하여 공급되며, 하단의 접지면은 안테나의 주파수 특성을 개선하기 위해 변경된다. 마지막으로 안테나의 지향성 특성을 향상시키기 위해 야기-형 구조가 추가된다. 제안한 마이크로스트립 패치 배열 안테나는 21.95 ~ 31.86 GHz의 넓은 주파수 대역폭을 확보하였다. 안테나의 이득은 28 GHz대역에서 9.7 dBi의 이득을 보였으며, 제안한 주파수 대역 전반에 걸쳐 높은 이득과 높은 지향성을 유지하였다. 제안한 안테나는 낮은 프로파일과 간단한 구조로 인해 5G 어플리케이션을 위한 좋은 대안될 수 있을 것이다.

Keywords

References

  1. T. S. Rappaport, S. Sun, R. M ayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schylz, M. Samimi, and F. Gutierrez "Millimeter wave mobile communications for 5G cellular: It will work!," IEEE access, vol. 1, pp. 335-349, May. 2013. https://doi.org/10.1109/ACCESS.2013.2260813
  2. S. F. Jilani, Q. H. Abbasi, and A. Alomainy, "Inkjet-Printed Millimetre-Wave PET-Based Flexible Antenna for 5G Wireless Applications," in 2018 IEEE MTT-S International Microwave Workshop Series on 5G Hardware and System Technologies (IMWS-5G), pp. 1-3, 2018.
  3. Y. Rahayu, and M. I. Hidayat, "Design of 28/38 GHz Dual-Band Triangular-Shaped Slot Microstrip Antenna Array for 5G Applications," in 2018 2nd International Conference on Telematics and Future Generation Networks (TAFGEN), pp. 93-97, 2018.
  4. H. A. Diawuo, and Y. B. Jung, "Broadband Proximity-Coupled Microstrip Planar Antenna Array for 5G Cellular Applications," IEEE Antennas and Wireless Propagation Letters, vol. 17, no. 7, pp. 1286-1290, May. 2018. https://doi.org/10.1109/LAWP.2018.2842242
  5. H. Aliakbari, A. Abdipour, R. Mirzavand, A. Costanzo, and P. Mousavi, "A single feed dual-band circularly polarized millimeter-wave antenna for 5G communication," in 2016 10th European Conference on Antennas and Propagation (EuCAP), pp. 1-5, 2016.
  6. O. M. Haraz, M. M. M. Ali, S. Alshebeili, and A. R. Sebak, "Design of a 28/38 GHz dual-band printed slot antenna for the future 5G mobile communication networks," in 2015 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting, pp. 1532-1533, 2015.
  7. H. Errifi, A. Baghdad, A. Badri, and A. Sahel, "Design and analysis of directive microstrip patch array antennas with series, corporate and series-corporate feed network," International Journal of Electronics and Electrical Engineering, vol. 3, no. 6, pp. 416-423, Dec. 2015.
  8. M. A. Sohaib, S. Bashir, S. ur Rehman, and F. Azam, "High gain microstrip yagi antenna for millimeter waves," in 2018 International Conference on Computing, Mathematics and Engineering Technologies (iCoMET), pp. 1-4, 2018.
  9. J. S. Park, J. B. Ko, H. K. Kwon, B. S. Kang, B. Park, and D. Kim, "A tilted combined beam antenna for 5G communications using a 28-GHz band," IEEE Antennas Wireless Propog. Lett, vol. 15, pp. 1685-1688, 2016. https://doi.org/10.1109/LAWP.2016.2523514
  10. S. Ershadi, A. Keshtkar, A. H. Abdelrahman, X. Yu, and H. Xin, "Design of wideband unit-cell element for 5G antenna arrays," in Proc. Asia-Pacific Microw. Conf. (APMC), pp. 1-3, Dec. 2015.
  11. H. Aliakbari, A. Abdipour, R. Mirzavand, A. Costanzo, and P. Mousavi, "A single feed dual-band circularly polarized millimeter wave antenna for 5G communication," in Proc. 10th Eur. Conf. Antennas Propag. (EuCAP), pp. 1-5, Apr. 2016.
  12. Y. X. Guo, K. M. Luk, and K.-F. Lee, "Broadband dual polarization patch element for cellular-phone base stations," IEEE Trans. Antennas Propag., vol. 50, no. 2, pp. 251-253, Feb. 2002. https://doi.org/10.1109/8.998004
  13. G. Breed, "An introduction to defected ground structures in microstrip circuits," High Frequency Electron., vol. 11, pp. 50-54, Jul. 2008.
  14. C. A. Balanis, Antenna theory: analysis and design. John Wiley & sons, pp. 811-876, 2005.
  15. D. M. Pozar, Microwave engineering. John Wiley & Sons, pp. 72-75, 2009.
  16. What are 5G frequency bands - RF Page [Internet]. Available: https://www.rfpage.com/what-are-5g-frequency-bands/.